A-Level Physics
 Current-Voltage Characteristics

Mark Scheme

Time available: 64 minutes Marks available: 51 marks

1. (a) Use of $P=V I$ or $P=I^{2} R$ or $P=\frac{\mathrm{V}^{2}}{\mathrm{R}} \checkmark$

Use of $\Delta W=P \Delta t \checkmark$
OR

Use of $\Delta Q=I \Delta t \checkmark$
Use of $W=V Q \checkmark$
$2.1 \times 10^{5}(\mathrm{~J}) \checkmark$
2 marks if time not converted to seconds (3600 J)
(b) Use of $\rho=\rho=\frac{R A}{L} \checkmark$
0.91 (m) + appropriate conclusion \checkmark

Allow calculation of R, ρ or A assuming 0.85 m length, and conclusion for second mark:
$R=3.5 \Omega$
$A=4.6 \times 10^{-6} \mathrm{~m}^{2}$
$\rho=2.1 \times 10^{-5} \Omega \mathrm{~m}$
(c) $350(\Omega) \checkmark$

Full marks for correct answer
Max 3 from: $\checkmark \checkmark \checkmark$
$15(\mathrm{~mA})$ read from graph
Allow 14.5 to 15.5
Conversion to A
pd across resistor $=7.4-2.2=5.2 \mathrm{~V}$
Use of $R=\frac{V}{I}$
Do not allow gradient calculation for R.
2. (a) Acceptable line \checkmark

Condone one failure from the following list
A. Line straight up to point 8 (expect ruled but condone freehand drawing)
B. Line shows balance of points on each side of drawn line
C. Line goes within region of data cross
D. Appropriate continuous transition between line and curve
E. Beyond point 12 shows either curve of decreasing gradient OR straight line through points 12 to 15
F. Thin line and non-variable thickness
G. Line of acceptable quality, eg not hairy or kinked

Please annotate on CMI_{+}

The line must intersect with the cross of the data point.
However, condone point 14 or 15 being off line of best fit for a smooth curve.
Condone partially erased and redrawn.
Do not allow double line under any circumstance.
Allow a curve with a slight inflection at point 14
(see example below)
Allow a split line where linear section has been extrapolated to the top of the grid e.g.

(b) Circle drawn around data point $9\left(8,360 \times 10^{-3}\right) \checkmark$

Condone circle drawn around
data point 10 (8.7, 390×10^{-3})
provided that linear section of line intersects with this cross.
(c) Correct read off for voltage from candidate line ${ }_{1} \checkmark$

This voltage must be within one half-square of actual value.
Correct answer using $\left(\frac{\frac{\text { their } V}{0.55} 22.2}{22.2}\right) \times 100_{2} \sqrt{ }$
Penalise mid-calculation rounding.
Condone missing \% sign;
2 or 3 significant figures for answer.
Penalise Physics Error of using gradient of tangent to determine the resistance.
(d) circuit \mathbf{D} is correct ${ }_{1} \checkmark$
circuit \mathbf{A} is incorrect because the ammeter is not measuring the current in \mathbf{R}
OR
ammeter is not in series with R
OR
the ammeter is measuring the current in the power supply ${ }_{2} \sqrt{ }$
circuit \mathbf{B} is incorrect because the voltage range (shown in the data) cannot be produced

OR
cannot achieve voltage less than (about) $5 \mathrm{~V}_{3} \sqrt{ }$
circuit \mathbf{C} is incorrect because the voltmeter is not in parallel with \mathbf{R}
OR
the voltmeter is not measuring the voltage across \mathbf{R}

OR
the voltmeter reading equals emf minus voltage across $\mathbf{R}_{4} \checkmark$ Ignore unclear or incorrect explanation for MP1
${ }_{2} \sqrt{ } \sqrt{ } \sqrt{ }$ and ${ }_{4} \sqrt{ }$ are awarded for correct explanations not for a statement that a circuit is incorrect.
for ${ }_{1} \sqrt{ }$ accept implied answer that circuit \boldsymbol{D} is correct if circuits $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{C} are all stated to be incorrect
for ${ }_{2} \sqrt{ }$ any suggestion that in circuit \boldsymbol{A} the voltmeter is in the wrong position forfeits the mark
Condone circuit B is incorrect "because the voltage cannot go down to zero" for ${ }_{3} \checkmark$.
Or
Condone circuit B is incorrect "there is less variation in voltage because the resistors are in series" $3 \sqrt{ }$.
for weak statements in MP2 and MP4 1 mark for 'circuit \boldsymbol{A} is incorrect because ammeter is in wrong place' and 'circuit \boldsymbol{C} is incorrect because voltmeter is in the wrong position'
If $\boldsymbol{A} / \boldsymbol{B} / \boldsymbol{C}$ is identified as correct then MAX 2 for two statements that correctly explain why the others are unsuitable.
If no other marks awarded: MAX $\mathbf{1}$ for "Circuit B is correct because the ammeter in series with resistor \boldsymbol{R} and the voltmeter is in parallel with \boldsymbol{R}.
3. (a) An increase in current / voltage leads to an increase in temperature (more heat generated) \checkmark

Ignore 'of particles' in first mark
Do not condone 'particles' in second mark
This causes an increase in the movement of the lattice/ions/atoms \checkmark
And therefore an increase in the rate of collisions with electrons \checkmark
Allow more frequent collisions
So the resistance increases as shown by V / I changing/V not proportional to I (on the graph) \checkmark

Allow correct reference to gradient of I V curve unless the answer suggests that this is the resistance or inverse of resistance.

Max 4
(b) $14.3(\Omega)$

Allow range 14 to 15
but calculated answer must lie between 14 and 15
(c) Determination of pd across either filament or resistor from graph \checkmark
$P d$ across resistor can be calculated from resistance value in (b) $E g V=0.18 \times 14.3=2.6$

Determination of pd across the other component, and values added \checkmark
Use of $\mathrm{V}=\mathrm{IR}$ to give 3.4 (V) Allow ecf if either value is wrong allow 2 max

Or
Clear attempt to determine total resistance and multiply by $0.18 \checkmark$ Condone small rounding error
(Resistance of lamp at $0.18 \mathrm{~A}=4.4 \Omega$)
Total resistance $=18.7 \Omega$ ecf from 2,2 \checkmark

3.4 V (ecf from 2.2) \checkmark

Allow for small rounding errors (eg allow range 3.3 to 3.5)
(d) Determination of current through either filament or resistor from graph \checkmark Allow calculation of resistor current using 4/(answer to 2.2)

Determination of current through the other component, and values added \checkmark
(Current through resistor $=0.28 \mathrm{~A}$
Current through filament $=0.36 \mathrm{~A}$)
$\mathrm{R}=\mathrm{V} / \mathrm{I}=4 /(0.28+0.36)=6.25(\Omega)$
If either value wrong allow 2 max
Condone small rounding errors.
Or

Calculation of filament resistance or statement of resistor resistance \checkmark
Resistance of filament $=11.1(\Omega)$
Calculation of other resistance and use of parallel formula (allow ecf from part b) \checkmark

Either resistance gets the first mark

6.2-6.3 (Ω) \checkmark

(e) Calculation of area, ignoring power of ten errors.

$$
A=8.0 \times 10^{-10} \mathrm{~m}^{2}
$$

Correct resistivity $3.1 \times 10^{-8} \checkmark$
Allow ecf for A (for example use of d for r gives 3.2×10^{-11} for A and 1.2×10^{-7} for answer)
$\Omega \mathrm{m} \checkmark$
Some working must be shown for award of unit mark.
4. (a) correct general shape \checkmark
accurate plotting to within $\frac{1}{2}$ square \checkmark
(b) $12(\mathrm{~V}) \checkmark, 30(\mathrm{~W}) \checkmark$
(c) $\quad \mathrm{R}=\left(\frac{6}{1.9}\right)=3.2(\Omega) \checkmark$
(d) Resistance increases \checkmark

Temperature increases \checkmark
More collisions / interaction of electrons with lattice ions \checkmark Condone 'atoms', 'molecule'.
Do not allow electron-electron collisions.
(e) Can attain neither maximum nor minimum voltage \checkmark

Explanation of either maximum OR minimum \checkmark
5.
(a)

$\checkmark \checkmark$
first mark for linear at origin and decreasing gradient in either quadrant (linear region can be very small) second mark for symmetry plus no dip at end or extended horizontal section at end
straight line scores zero
(b) (i) resistance (of filament lamp) increases \checkmark
(ii) filament lamp is a non-ohmic conductor as current is not (directly) proportional to voltage / resistance is not constant \checkmark
proportionality can be shown using graph
(d) (i) (use of energy $=V / t)$
(energy converted by X $=60 \times 120 \times 3600=$) $2.59 \times 10^{7} \mathrm{~J}$ V
(energy converted by $\mathrm{Y}=11 \times 120 \times 3600=$) $4.75 \times 10^{6} \mathrm{~J}$ V
Accept answers to 1 sig. fig.

