

A-Level Physics

Digital Signal Processing

Mark Scheme

Time available: 58 minutes Marks available: 44 marks

www.accesstuition.com

Mark schemes

1.

(a) *Ā* **√**

. B **√**

Ā.B√

Do not allow $\overline{A} + \overline{B}$

(b) EOR ✓

Accept: XOR; EXOR; Exclusive OR gate

1

2

(c)

В	Α	C	D	E	X	Y	Z
0	0	1	1	0	0	1	0
0	1	0	1	1	0	0	1
1	0	1	0	1	1	0	0
1	1	0	0	0	0	1	0

X and Z correct ✓

Y correct ✓

2

(d) NOR gate ✓

Also accept any of:

EXNOR; ENOR; XNOR; Exclusive NOR gate

Z

1

(e)

X Y

 ✓

A > B A = B A < B

1

[7]

- 2.
- (a) When $V_{\rm c}$ reaches a value of $V_{\rm u}$, the output voltage $V_{\rm out}$ drops LOW. \checkmark
 - The capacitor now discharges through the resistor causing the value of $V_{\rm c}$ to fall. \checkmark
 - When $V_{\rm c}$ reaches a value of $V_{\rm L}$, the output voltage $V_{\rm out}$ jumps HIGH. \checkmark

3

(b) Mark-to-space ratio

 $R_{\rm B}$ gets smaller and hence ($t_{\rm H}$) is reduced

OR

 R_{A} gets bigger and hence (t_{L}) is increased \checkmark

First mark: Either statement or equivalent labelled diagram(s).

Hence mark:space ratio is reduced / smaller ✓

Second mark: Conclusion

$$\Pr{\text{PRF} = \frac{1}{T} = \frac{1}{(t_H + t_L)} = \frac{1}{0.7C (2R + R_A + R_B)}}$$

The total resistance $(2R + R_A + R_B)$ is constant \checkmark

As a result of a constant resistance in the circuit, PRF does not change \(\strict{\sqrt{}} \)

First mark: explanation of how total resistance in the circuit affects

the periodic time

Second mark: Conclusion.

[7]

3. (a)

	Output		
С	В	Α	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

All Q states correct for 1 mark

1

Correct orientation for resistor & switch \checkmark

Correct tap-off point for X ✓

(d) The gate acts as an inverter \checkmark

Accept 'NOT' as the function

(e) Must be a reason and a consequence for the mark. ✓

eg Uses only one type of logic gate so need to hold less stock OR

Uses only one chip rather than two so circuit board can be smaller / less power needed / cheaper

Do not allow: Less complex circuit

4. (a) Difference: BCD counter outputs binary codes. A Johnson decade counter outputs a single output sequentially**√**

Similarity: Both counters recycle at the 10th pulse ✓

Both outputs described.

Condone – max counter value for 10th pulse.

Accept: both counters count from 0-9

OR both counters count to 10

2

2

2

1

1

[7]

(b) Duty cycle:

From oscilloscope $t_{\rm on}$ = 3 div @ 50 $\mu \rm s$ / div = 150 $\mu \rm s$ OR

$$t_{\rm off}$$
 = 2 div @ 50 µs / div = 100 µs **\checkmark**

$$\frac{t_{\text{ou}}}{(t_{\text{ou}} + t_{\text{off}})} \times 100 = 60\% \qquad \text{OR} \quad 0.6 \quad \checkmark$$

(accept 'divisions' to signify the values of t_{on} and t_{off})

Frequency:

From CRO $t_p = 5 \text{ div } @ 50 \text{ } \mu\text{s} / \text{ div}$

$$t_{\rm p}$$
 = 250 µs

$$f = 1/t_p = 4 \text{ kHz } \checkmark$$

Only 1 mark for:

either of t_{on} or t_{off} correct but duty cycle wrong

OR

correct use of both wrong t_{on} and t_{off}

One mark for:

correct use of their $t_{on} + t_{off}$

(c) **BCD**: $Q_2 = 600 / 10 = 60 \text{ Hz } \checkmark$

(only one pulse is produced in 10 clock pulses at Q2)

Johnson: $Q_2 = 600 / 10 = 60 \text{ Hz } \checkmark$

5. (a)

Flat line of Q_0 - 1 mark

Correct fall of Q₁ and rise of Q₂ - 1 mark

2

3

2

[7]

Logic OR gate correctly connected in position for 1 mark

(c) The ON time for the green LED is determined by:

the frequency of the clock ✓

the number of adjacent outputs that are OR'ed ✓

Accept reference to the period of the clock pulse.

(d) $\mathbf{R} = V_R / I$; $\mathbf{R} = (9 - 2.1) V \checkmark / 9 \text{ mA}$

R = 6.9 V / 9 mA; $R = 767 \Omega \checkmark$

Minimum resistor value that can be used in order not to exceed 9 mA is 767 Ω .

The 720 Ω resistor range is (684 to 756) Ω and falls below this value so should not be used. \checkmark

OR

Calculation using 720 Ω ±5% Resistor range = (684 to 756) Ω \checkmark leading to smallest current of 9.1 mA \checkmark

This current will exceed the permitted value of 9 mA. Don't use. ✓

1 One mark for voltage across the resistor

2One mark for a suitable I-V-R calculation

3One mark for conclusion with reason.

Use of error range to give max resistance must be seen in either $_2$ or $_3$ for that mark to be awarded.

Г

3

1

2

[8]

6.

(a)

A	В	а	b	С	d	е	f	g	Display
0	0	0	0	0	1	1	1	0	L
0	1	1	0	1	1	0	1	1	S
1	0	1	0	1	1	0	1	1	S
1	1	0	1	1	0	1	1	1	Н

1 mark for row L

1 mark for row S (both)

1 mark for row H

(b) EXOR gate

1

3

(c) (i) Different combinations produce different brightness 1 Disadvantage

1

(ii) R=V/I; (5V - 2.2V) / 20mA; $2.8V / 20mA = 140\Omega$ 1 mark for 2.8V drop 1 mark for answer

2

(iii) E24 = 150Ω

1 mark for answer

1

(8)