

Digital Signal Processing

Question Paper

Time available: 58 minutes Marks available: 44 marks

1. The diagram below shows a logic system made of logic gates labelled $\mathbf{1}$ to $\mathbf{6}$ The logic system has inputs \mathbf{A} and \mathbf{B} and outputs \mathbf{X}, \mathbf{Y} and \mathbf{Z}.

(a) Write the simplest Boolean algebra expression for output \mathbf{X} in terms of inputs \mathbf{A} and \mathbf{B}.

$$
\mathbf{X}=
$$

\qquad
(b) State the name of logic gate 5 in the figure above.
\qquad
(c) Complete the table below, the truth table for this logic system.

\mathbf{B}	\mathbf{A}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
0	0	1	1	0			
0	1	0	1	1			
1	0	1	0	1			
1	1	0	0	0			

(d) Suggest a single logic gate that can replace the combination of gates 5 and 6 in this system.
\qquad
(e) The logic system in above diagram is designed to indicate which of inputs \mathbf{A} and \mathbf{B} has the larger binary value, or whether the values are the same. Each decision is indicated by one of the outputs \mathbf{X}, \mathbf{Y} or \mathbf{Z} becoming a logic 1

Which row identifies the outputs \mathbf{X}, \mathbf{Y} and \mathbf{Z} ?
Tick (\checkmark) one box.

2. Figure 1 shows a type of NOT gate called a Schmitt Trigger. This is connected to a capacitor of capacitance C and a resistor of resistance R to make an oscillator circuit. The circuit is used to produce continuous clock pulses.

Figure 1

$V_{\text {out }}$ switches HIGH or LOW when the input voltage V_{c} passes through one of two trigger voltage values.

The output voltage $V_{\text {out }}$ switches to:

- LOW when V_{c} rises and reaches the upper trigger voltage V_{U}
- HIGH when V_{c} falls and reaches the lower trigger voltage V_{L}.
(a) Initially the capacitor is uncharged and V_{c} is at 0 V .

Explain the sequence of actions of this circuit as the output goes through one full cycle.
The first two stages have been done for you.
You should refer to the $R C$ circuit in Figure 1 and to V_{U} and V_{L} in your answer.
Stage 1: Since V_{c} is LOW, the output is HIGH.
Stage 2: The capacitor now charges through the resistor, making V_{c} rise.
Stage 3: \qquad
\qquad
\qquad
Stage 4: \qquad
\qquad
\qquad
Stage 5: \qquad
\qquad
\qquad
(b) Figure $\mathbf{2}$ shows the oscillator circuit after it has been modified by the addition of:

- two diodes D_{1} and D_{2}
- a potential divider that has a total resistance value of $\left(R_{\mathrm{A}}+R_{\mathrm{B}}\right)$.

Figure 2

In this particular circuit:

- the time t_{H} for the output signal to be HIGH is given by $t_{\mathrm{H}}=0.7 C\left(R+R_{\mathrm{B}}\right)$
- the time t_{L} for the output signal to be LOW is given by $t_{\mathrm{L}}=0.7 C\left(R+R_{\mathrm{A}}\right)$.

The slider of the potential divider is moved towards \mathbf{X}, as shown in Figure 2.
State and explain the effect of this change on:

- the mark-to-space ratio $\left(t_{\mathrm{H}}: t_{\mathrm{L}}\right)$
- the pulse rate frequency (PRF).
mark-to-space ratio \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
PRF \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3. A burglar-alarm system in a house sounds an alarm during the hours of darkness when one of the following conditions is met:

- the door is opened
- the window is opened
- both the door and the window are opened.

Figure 1 shows the main burglar-alarm subsystems and the logic status for the inputs and output.

Figure 1

(a) The table below is a partially completed truth table for the logic subsystem.

Inputs			Output
\mathbf{C}	\mathbf{B}	\mathbf{A}	\mathbf{Q}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	
1	1	0	
1	1	1	

Complete the table above.

Figure 2 shows the symbol of the push-to-make switch used in the door detector. When the door is closed, the switch button is pushed down onto the contacts. It automatically releases when the door opens.

Figure 2

(b) Complete Figure 3 to show how this switch, together with a $10 \mathrm{k} \Omega$ resistor, can be connected to create the door detector circuit in Figure 1.

Label the output of the circuit with an \mathbf{X}.
Figure 3

$$
9 \mathrm{~V} \text { O- }
$$

Figure 4 shows a logic circuit for a different alarm system.
Figure 4

(c) Write the Boolean algebra expression for \mathbf{Q} in terms of inputs \mathbf{A}, \mathbf{B} and \mathbf{C}. In your answer use only AND and NOR operators.

Q = \qquad
(d) Figure 5 shows a logic circuit that has the same function as the circuit in Figure 4. Only one type of gate is used in the circuit in Figure 5.

Figure 5

State the logic function performed by gate 4.
\qquad
(e) Microchips containing two-input logic gates are mass-produced. Each microchip contains four identical logic gates.

A manufacturer of the logic circuit used in the burglar alarm chooses to make the circuit in Figure 5 rather than that in Figure 4.

Suggest why.
\qquad
\qquad
4. A Johnson decade counter uses a Johnson counter together with decoding logic.

This arrangement produces a single logic 1 at a series of outputs $Q_{0}-Q_{9}$ in a continuous sequence.
(a) Describe one functional difference and one functional similarity between how a Johnson decade counter and a BCD counter output their counts.
functional difference \qquad
\qquad
\qquad
\qquad
functional similarity \qquad
\qquad
\qquad
\qquad
(b) An astable oscillator produces a continuous train of pulses.

The figure below shows the display of the pulses on an oscilloscope.

The oscilloscope settings are:
voltage gain $=2 \mathrm{~V} /$ division
time-base $=50 \mu \mathrm{~s} /$ division.
Determine the duty cycle and frequency of the signal.

(c) The astable is adjusted to produce a 600 Hz test signal.

This signal is applied to the clock input of the BCD counter and to the clock input of the Johnson decade counter.

The outputs of the $B C D$ counter are Q_{0}, Q_{1}, Q_{2} and Q_{3} where Q_{0} is the least significant part of the output.
The outputs of the Johnson decade counter are $Q_{0}, Q_{1}, Q_{2} \ldots$ Q.
Determine the frequency of the pulses available at Q_{2} for each counter.

BCD counter:
Johnson decade counter:
frequency of pulses =
frequency of pulses $=$
\qquad Hz
\qquad Hz
5. Figure 1 shows the basic layout for a Johnson decade counter.

The main input is the clock (CK).
The main outputs are shown as Q_{0} to Q_{g}.
Figure 1

(a) Figure 2 shows part of the timing diagram for a Johnson decade counter.

This timing diagram shows the output logic states against time. The counter is reset to make $Q_{0}=1$ and then the first two pulses are applied.

Complete Figure 2 to show the logic states of $\mathrm{Q}_{0}, \mathrm{Q}_{1}$ and Q_{2}.
Figure 2

(b) A student sets up the counter to make the traffic light sequence:

$$
\text { red } \rightarrow \text { red + amber } \rightarrow \text { green } \rightarrow \text { amber }
$$

The sequence then repeats.
Figure 3 shows a partially completed diagram for producing this sequence.
Draw an OR gate and connections on Figure 3 so that the LEDs go through the complete sequence.

Figure 3

(c) State two factors that determine the ON time for the green LED shown in Figure 3.

1 \qquad
\qquad
2 \qquad
\qquad
(d) The potential difference across the green LED is 2.1 V when it is lit. The current through it should not exceed 9 mA .

All logic gate outputs are:
logic low $=0 \mathrm{~V}$
logic high $=9 \mathrm{~V}$.
The student suggests that a resistor of resistance 720Ω and a tolerance of $\pm 5 \%$ should be used for \mathbf{R}.

Deduce whether the student's suggestion would be suitable.
\qquad
\qquad
\qquad
\qquad
6. A fridge is fitted with a temperature-sensing unit to indicate whether the temperature inside the fridge is too high, too low, or at a safe temperature.
The system consists of a temperature sensor that produces a 2-bit binary output, a logic circuit and a low current, common cathode 7 -segment display.
Figure 1 shows a block diagram of the system.
Figure 1

Table 1 shows the operation of the system.
Table 1

Fridge temperature	Temperature sensor output		7-segment display output
	\mathbf{X}	\mathbf{Y}	
$<3^{\circ} \mathrm{C}$	0	0	L
$3^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$	0	1	S
$4^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$	1	0	S
$>5^{\circ} \mathrm{C}$	1	1	H

$$
\begin{array}{|c|}
\hline \text { Key } \\
\mathrm{L}=\text { low } \\
\mathrm{S}=\text { safe } \\
\mathrm{H}=\text { high } \\
\hline
\end{array}
$$

(a) Complete Table 2 to show the logic signals required on lines a to g to display the specified characters.

Table 2

\mathbf{X}	\mathbf{Y}	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	Display
0	0								L
0	1								S
1	0								S
1	1								H

(b) Circle the single logic gate which would generate the required signal for segment \mathbf{a}.
AND
EXOR
OR
NAND
NOR
NOT
(c) The LEDs in the 7-segment display must be protected by current limiting resistors.

Figure $\mathbf{2}$ shows two methods, \mathbf{A} and \mathbf{B}, of connecting current limiting resistors.
Figure 2

(i) State one disadvantage of method A.
\qquad
\qquad
(ii) Calculate the value of the current limiting resistors required in method \mathbf{B} to limit the current in each segment to 20 mA .
Assume the voltage from the logic circuit is 5 V and the forward voltage drop across each LED in the 7 -segment display is 2.2 V .
\qquad
\qquad
\qquad
(iii) Circle the appropriate value for these resistors from the following list of E24 resistors.
110Ω
150Ω
270Ω
$1.1 \mathrm{k} \Omega$
$1.5 \mathrm{k} \Omega$
(Total 8 marks)

