

A-Level Physics Discrete Semiconductor Devices Mark Scheme

Time available: 73 minutes Marks available: 42 marks

www.accesstuition.com

Mark schemes

1.

(a) Silicon dioxide layer ✓

Accept Silicon dioxide

1

(b)

drain

gate

source ✓

1

(c) For lamp $P = I^2 R$

$$I = \sqrt{(P/R)} = \sqrt{(0.65 \text{ W} / 154 \Omega)} = 65 \text{ mA} \ \ \checkmark_1$$

Must use $P = I^2 R$

This leads to a voltage across the lamp of approx 10 V and a $V_{
m DS}$ of approx 2 V

Read from graph to give $V_{\rm GS}$ = 3.4 V ${\it J}_{\rm 2}$

Accept a $V_{\rm GS}$ range of 3.3 V to 3.5 V

2

(d) Current consumption on stand-by: $8.5 \times 10^9 \times 10 \times 10^{-9} = 85 \text{ A} \checkmark 1$ Makes a meaningful calculation (one which can lead to

Makes a meaningful calculation (one which can lead to a conclusion) using data for the CPU.

Battery life: 3600 C × 3.110 = 1.12 × 10^4 C \checkmark_2

Makes a meaningful calculation (one which can lead to a conclusion) using data for battery.

Use $1.12 \times 10^4 = 85 \times t$

Gives t = 131.8 seconds (accept 132 seconds OR just over 2 mins) which is much less than 12 hours \checkmark_3

Uses the value of t to reach a valid conclusion

OR

Uses the values of the currents from the CPU and battery to reach a valid conclusion

[7]

2.

(a) Photoconductive mode

Accept 'reverse bias'

1

3

(b) Dark currents will become a source of noise – need to keep S:N as high as possible OWTTE

OR

Need to have a large difference in signal when detector is in light and dark \checkmark

Must include idea of 'noise'

OR

Must include concept of large signal change to represent digital signal

(c) At 850 nm, $R_{\lambda} = 0.50 \text{ A/W } \checkmark$

Reading from graph

Allow 0.49 A/W to 0.51 A/W

Using
$$R_{\lambda} = \frac{I_{\rm p}}{P}$$
 $I_{\rm p} = R_{\lambda} \times P$ $0.50 \times 4 \times 10^{-6} = 2 \ \mu \text{A} \ \checkmark \ \text{ecf}$

$$V_{\rm out}$$
 = $I_{\rm p}$ × R 2 μ A × 560 $k\Omega$ = +1.12 \vee \checkmark

Accept voltage in range of 1.10 V to 1.14 V

Accept value without + sign

(d)

Correct configuration of R_1 and R_2 \checkmark

 R_1 : R_2 ratio 3: 1 in suggested range \checkmark

Label the input point which must have a direct connection to the non-inverting input \checkmark

One mark only

An inverting op amp configuration with a voltage gain -4.

[8]

3

1

3

3.

(a) With the north pole facing the sensor:

Higher sensitivity/larger gradient ✓ over very short range ✓ Some ambiguity in liquid level due to peak in graph – (more than one level referenced to a single output reading) ✓

OR

With the south pole facing the sensor:

Less sensitivity/smaller gradient ✓ but covers a larger range ✓
No ambiguity in liquid level – (each level produces a discrete output up to saturation)

Mark awarded for each compared point

3

(b) 2.4 divisions @ 5 ms / div = 12 ms

Periodic time $T = 12 \text{ ms} \times 3 = 36 \text{ ms} \checkmark$

Or

7.2 divisions @ 5 ms / div = 36 ms

f = 1 / T; f = 1 / 36 ms; 27.8 rev / sec \checkmark

27 full revolutions in one second ✓

One mark for appropriate reading from graph to produce periodic time (T).

One mark for frequency using their (T).

+ve knee develops at 0.7 V and does not exceed 1.5 V at 30 mA 🗸

One mark for rounding down

3

[6]

–ve knee develops at 5.1 V; 5 mA with near vertical drop. Does not exceed – 5.5 V at –30 mA \checkmark

2

(b) Zener diode provides a reference voltage for non-inverting input ✓

Or

(a)

4.

Zener diode provides a stabilised voltage for non-inverting input ✓

**Accept combination of the two statements*

1

 $I = V/R = 3.9 \text{ V} / 100 \Omega = 39 \text{ mA}$

This is larger than the minimum current to make Zener diode work so the resistor value is fine. ✓

$$P = I^2 R = (39 \times 10^{-3})^2 \times 100 = 0.152 \text{ watts}$$

This is greater than the power rating for the resistor, so is not a suitable power rating for the resistor ✓

Ecf from value of I

(d) The reference voltage at the non-inverting input is now smaller \checkmark

This will cause the output **W** to switch at a lower light intensity than before ✓

 $Q = (\overline{X + Y}) \cdot W \checkmark$ (e)

Accept transformations eg

$$Q = \overline{X} \cdot (\overline{Y + \overline{W}})$$

$$Q = \overline{X} \cdot Y \cdot \overline{W}$$

MOSFET has large input impedance (f)

OR

MOSFET causes no loading of the logic gate output. ✓

High input resistance √ (a) 5.

low / no energy consumption when in the ON and OFF states√

No input current / control by pd only.

(b) Prevents static charge building up on gate (-source capacitor) √ Makes gate voltage 0 V when no water / nothing between probes ✓

(c) Identifies or attempts to use potential divider equation √

2.4 = 12 x 1 / (R_{probes} +1) leading to R_{probes} = 9.6 / 2.4 = 4 M
$$\Omega$$
 \checkmark

Photoconductive (accept reverse bias)

(a) 6.

[6]

2

2

1

1

2

2

2

1

[9]

(b)

	Tick (✓) if correct
Non-inverting amplifier	
Comparator	√
Summing amplifier	
Difference amplifier	

1

(c) Light level ~ 1000 lux +/- 10%

1

(d)
$$V_x = IR$$
; $V_x = 100 \mu A \times 20 k\Omega = 2 V$

1

(e) Rule that if $V_- > V_+$ then V_{out} is 0 V (low)

1

Voltage drop across LED so LED is ON

1

Do not allow LED is ON if supported by incorrect reason

[6]