

 A-Level Physics

 A-Level Physics

 Discrete Semiconductor

 Discrete Semiconductor Devices
 Mark Scheme

Time available: 73 minutes Marks available: 42 marks

1. (a) Silicon dioxide layer \checkmark Accept Silicon dioxide
(b)

(c) For lamp $P=I^{2} R$

$$
\begin{aligned}
& I=\sqrt{ }(P / R)=\sqrt{ }(0.65 \mathrm{~W} / 154 \Omega)=65 \mathrm{~mA} \checkmark_{1} \\
& \text { Must use } P=I^{2} R
\end{aligned}
$$

This leads to a voltage across the lamp of approx 10 V and a V_{Ds} of approx 2 V
Read from graph to give $V_{\mathrm{GS}}=3.4 \mathrm{~V} \sqrt{2}$
Accept a $V_{G S}$ range of 3.3 V to 3.5 V
(d) Current consumption on stand-by: $8.5 \times 10^{9} \times 10 \times 10^{-9}=85 \mathrm{~A} \sqrt{ }$ Makes a meaningful calculation (one which can lead to a conclusion) using data for the CPU.

Battery life: $3600 C \times 3.110=1.12 \times 10^{4} C \checkmark_{2}$
Makes a meaningful calculation (one which can lead to a conclusion) using data for battery.

Use $1.12 \times 10^{4}=85 \times t$
Gives $t=131.8$ seconds (accept 132 seconds OR just over 2 mins) which is much less than 12 hours \checkmark_{3}

Uses the value of to reach a valid conclusion
OR
Uses the values of the currents from the CPU and battery to reach a valid conclusion
2. (a) Photoconductive mode

Accept 'reverse bias'
(b) Dark currents will become a source of noise - need to keep $\mathrm{S}: \mathrm{N}$ as high as possible OWTTE

OR
Need to have a large difference in signal when detector is in light and dark \checkmark Must include idea of 'noise'
OR
Must include concept of large signal change to represent digital signal
(c) At $850 \mathrm{~nm}, R_{\lambda}=0.50 \mathrm{~A} / \mathrm{W} \checkmark$

Reading from graph
Allow 0.49 A/W to 0.51 A/W
Using $R_{\lambda}=\frac{I_{\mathrm{p}}}{P} \quad I_{\mathrm{p}}=R_{\lambda} \times P \quad 0.50 \times 4 \times 10^{-6}=2 \mu \mathrm{~A} \checkmark$ ecf
$V_{\text {out }}=I_{\mathrm{p}} \times R 2 \mu \mathrm{~A} \times 560 \mathrm{k} \Omega=+1.12 \mathrm{~V} \checkmark$
Accept voltage in range of 1.10 V to 1.14 V
Accept value without + sign
(d)

Correct configuration of R_{1} and $R_{2} \checkmark$
$R_{1}: R_{2}$ ratio $3: 1$ in suggested range \checkmark
Label the input point which must have a direct connection to the non-inverting input \checkmark
One mark only
An inverting op amp configuration with a voltage gain -4.
3. (a) With the north pole facing the sensor:

Higher sensitivity/larger gradient $\sqrt{ }$ over very short range \checkmark
Some ambiguity in liquid level due to peak in graph - (more than one level referenced to a single output reading) \checkmark

OR
With the south pole facing the sensor:
Less sensitivity/smaller gradient \checkmark but covers a larger range \checkmark
No ambiguity in liquid level - (each level produces a discrete output up to saturation) \checkmark

Mark awarded for each compared point
(b) 2.4 divisions @ $5 \mathrm{~ms} / \mathrm{div}=12 \mathrm{~ms}$

Periodic time $T=12 \mathrm{~ms} \times 3=36 \mathrm{~ms} \checkmark$
Or
7.2 divisions @ $5 \mathrm{~ms} /$ div $=36 \mathrm{~ms}$
$f=1 / T ; f=1 / 36 \mathrm{~ms} ; 27.8 \mathrm{rev} / \mathrm{sec} \checkmark$
27 full revolutions in one second \checkmark
One mark for appropriate reading from graph to produce periodic time (T).
One mark for frequency using their (T).
One mark for rounding down
4. (a) +ve knee develops at 0.7 V and does not exceed 1.5 V at $30 \mathrm{~mA} \checkmark$
-ve knee develops at $5.1 \mathrm{~V} ; 5 \mathrm{~mA}$ with near vertical drop. Does not exceed -5.5 V at $-30 \mathrm{~mA} \sqrt{ }$
(b) Zener diode provides a reference voltage for non-inverting input \checkmark

Or
Zener diode provides a stabilised voltage for non-inverting input \checkmark
Accept combination of the two statements
(c) $\quad \mathbf{I}=\mathrm{V} / \mathbf{R}=3.9 \mathrm{~V} / 100 \Omega=39 \mathrm{~mA}$

This is larger than the minimum current to make Zener diode work so the resistor value is fine. \checkmark
$\mathbf{P}=\mathbf{I}^{\mathbf{2}} \mathbf{R}=\left(39 \times 10^{-3}\right)^{2} \times 100=0.152$ watts
This is greater than the power rating for the resistor, so is not a suitable power rating for the resistor \checkmark

Ecf from value of I

(d) The reference voltage at the non-inverting input is now smaller \checkmark

This will cause the output \mathbf{W} to switch at a lower light intensity than before $\mathbf{\checkmark}$
(e) $\quad \mathrm{Q}=(\overline{\mathrm{X}+\mathrm{Y}}) \cdot \mathrm{W} \checkmark$

Accept transformations eg

$$
Q=\bar{X} \cdot(\overline{Y+\bar{W}})
$$

$$
Q=\bar{X} \cdot Y \cdot \bar{W}
$$

(f) MOSFET has large input impedance

OR
MOSFET causes no loading of the logic gate output. \checkmark
5. (a) High input resistance $\sqrt{ }$
low / no energy consumption when in the ON and OFF states \checkmark
OR
No input current / control by pd only.
(b) Prevents static charge building up on gate (-source capacitor) \checkmark

Makes gate voltage 0 V when no water / nothing between probes \checkmark
(c) Identifies or attempts to use potential divider equation \checkmark
$2.4=12 \times 1 /\left(R_{\text {probes }}+1\right)$ leading to $R_{\text {probes }}=9.6 / 2.4=4 \mathrm{M} \Omega \checkmark$
6. (a) Photoconductive (accept reverse bias)
(b)

	Tick $(\boldsymbol{\checkmark})$ if correct
Non-inverting amplifier	
Comparator	\checkmark
Summing amplifier	
Difference amplifier	

(c) Light level ~ 1000 lux +/- 10\%
(d) $\quad V_{\mathrm{x}}=\mathrm{IR} ; V_{\mathrm{x}}=100 \mu \mathrm{~A} \times 20 \mathrm{k} \Omega=2 \mathrm{~V}$
(e) Rule that if $V_{-}>V_{+}$then $V_{\text {out }}$ is 0 V (low)

Voltage drop across LED so LED is ON
Do not allow LED is ON if supported by incorrect reason

1

1
[6]

