

A-Level Physics
 Electric Fields (Multiple Choice)
 Question Paper

Time available: 29 minutes Marks available: 20 marks

1. A particle of mass m and charge Q is accelerated from rest through a potential difference V. The final velocity of the particle is u.

A second particle of mass $\frac{m}{2}$ and charge $2 Q$ is accelerated from rest through a potential difference $2 V$.

What is the final velocity of the second particle?
A $\sqrt{2} u$ \square
B $\quad 2 \sqrt{2} u$

C $4 u$

D $8 u$ \square
2. An isolated spherical conductor is charged.

The conductor has a radius R and an electric potential V. The electric field strength at its surface is E.

Point \mathbf{T} is a distance $2 R$ from the surface.

What are the electric field strength and electric potential at \mathbf{T} ?

	Electric field strength	Electric potential
A	$\frac{E}{2}$	$\frac{V}{4}$
B	$\frac{E}{3}$	$\frac{V}{9}$
C	$\frac{E}{4}$	$\frac{V}{2}$
D	$\frac{E}{9}$	$\frac{V}{3}$

3. At a distance L from a fixed point charge, the electric field strength is E and the electric potential is V.

What are the electric field strength and the electric potential at a distance $3 L$ from the charge?

	Electric field strength	Electric potential
A	$\frac{E}{3}$	$\frac{V}{9}$
B	$\frac{E}{3}$	$\frac{V}{3}$
C	$\frac{E}{9}$	$\frac{V}{3}$
D	$\frac{E}{9}$	$\frac{V}{9}$

4. Which diagram shows lines of equipotential in steps of equal potential difference near an isolated point charge?

A

\qquad
\qquad
\qquad

C

B

D

A

B

C

D

(Total 1 mark)
5. 1.5 mJ of work is done when a charge of $30 \mu \mathrm{C}$ is moved between two points, \mathbf{M} and \mathbf{N}, in an electric field.

What is the potential difference between \mathbf{M} and \mathbf{N} ?

A 20 mV 0

B 20 V

C 45 V
0
D 50 V

6. A conducting sphere holding a charge of $+10 \mu \mathrm{C}$ is placed centrally inside a second uncharged conducting sphere.

Which diagram shows the electric field lines for the system?
A

A 0
B 0
C 0
D 0
7. A particle of mass m and charge q is accelerated through a potential difference V over a distance d.

What is the average acceleration of the particle?
A $\frac{q V}{m d}$
0
B $\frac{m V}{q d}$

C $\frac{V}{m q d}$ 0
D $\frac{d V}{m q}$

(Total 1 mark)
8. An electron moves through a distance of 0.10 m parallel to the field lines of a uniform electric
field of strength $2.0 \mathrm{kN} \mathrm{C}^{-1}$.

What is the work done on the electron?

A zero

B $1.6 \times 10^{-17} \mathrm{~J}$

C $3.2 \times 10^{-17} \mathrm{~J}$

D $1.6 \times 10^{-21} \mathrm{~J}$ \square
(Total 1 mark)
9. An electron moving with constant speed enters a uniform electric field at right angles to the

What is true about the force acting on the electron?

A It is at right angles to the direction of the field.

B It is in the opposite direction to the direction of the field.
0
C It causes the electron to continue in the same direction with its speed increasing steadily.

D It causes the electron to continue in the same direction with its speed decreasing steadily.
10. Two parallel metal plates are separated by a distance d and have a potential difference V across them. Which expression gives the magnitude of the electrostatic force acting on a charge Q placed midway between the plates?

A $\frac{2 V Q}{d}$

B $\frac{V Q}{d}$ \bigcirc

C $\frac{V Q}{2 d}$

D $\frac{Q d}{v}$

(Total 1 mark)
11. The diagram shows two particles at distance d apart. One particle has charge $+Q$ and the other $-2 Q$. The two particles exert an electrostatic force of attraction, F, on each other. Each particle is then given an additional charge $+Q$ and their separation is increased to distance $2 d$.

Which of the following gives the force that now acts between the two particles?

A	an attractive force of	$\frac{F}{4}$	\square
B	a repulsive force of	$\frac{F}{4}$	\square
C	an attractive force of	$\frac{F}{2}$	\square
		\square	
D	a repulsive force of	$\frac{F}{2}$	\square

(Total 1 mark)
12. The diagram shows the field lines in a region of an electric field created by a positive charge.

Which one of the following statements is correct?
When moving from X to Y
A the electric potential is constant.
B the electric potential increases.
C the electric potential decreases.
D the electric potential changes from positive to negative.
(Total 1 mark)
13.

The diagram below shows the field lines and equipotential lines around an isolated positive point charge.

Which one of the following statements concerning the work done when a small charge is moved in the field is incorrect?

A when it is moved from either P to Q or S to R , the work done is the same in each case
B when it is moved from Q to R no work is done
C when it is moved around the path PQRS, the overall work done is zero
D when it is moved around the path PQRS, the overall work done is equal to twice the work done in moving from P to Q
14. Two horizontal parallel plate conductors are separated by a distance of 5.0 mm in air. The lower plate is earthed and the potential of the upper plate is +50 V .

Which line, \mathbf{A} to \mathbf{D}, in the table gives correctly the electric field strength, E, and the potential, V, at a point midway between the plates?

	electric field strength $E / \mathbf{~ V m}^{-1}$	potential V / \mathbf{V}
A	1.0×10^{4} upwards	25
B	1.0×10^{4} downwards	25
C	1.0×10^{4} upwards	50
D	1.0×10^{4} downwards	50

(Total 1 mark)
15. When a charge moves between two points in an electric field, or a mass moves between two points in a gravitational field, energy may be transferred.
Which one of the following statements is correct?
A No energy is transferred when the movement is parallel to the direction of the field.
B The energy transferred is independent of the path followed.
C The energy transferred is independent of the start and finish points.
D Energy is transferred when the movement is perpendicular to the field lines.
(Total 1 mark)
16. Two charges, each of +0.8 nC , are 40 mm apart. Point P is 40 mm from each of the charges.

What is the electric potential at P ?
A zero
B $\quad 180 \mathrm{~V}$
C $\quad 360 \mathrm{~V}$
D 4500 V separately, at right angles, a uniform electric field, and a uniform magnetic field?

	uniform electric field	uniform magnetic field
A	parabolic	circular
B	circular	parabolic
C	circular	circular
D	parabolic	parabolic

18. A repulsive force F acts between two positive point charges separated by a distance r.

What will be the force between them if each charge is doubled and the distance between them is halved?

A F
B $2 F$
C $4 F$
D $16 F$
(Total 1 mark)
19.

An ion carrying a charge of $+4.8 \times 10^{-19} \mathrm{C}$ travels horizontally at a speed of $8.0 \times 10^{5} \mathrm{~ms}^{-1}$. It enters a uniform vertical electric field of strength $4200 \mathrm{~V} \mathrm{~m}^{-1}$, which is directed downwards and acts over a horizontal distance of 0.16 m . Which one of the following statements is not correct?

A The ion passes through the field in $2.0 \times 10^{-7} \mathrm{~s}$.
B The force on the ion acts vertically downwards at all points in the field.
C The magnitude of the force exerted on the ion by the field is $1.6 \times 10^{-9} \mathrm{~N}$.
D The horizontal component of the velocity of the ion is unaffected by the electric field.
(Total 1 mark)

What is the force between the charges when the separation is reduced to $\frac{r}{3}$?

A $\frac{F}{9}$
B $\frac{F}{3}$

C $3 F$
D $9 F$

