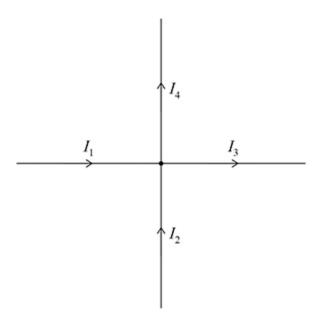

A-Level Physics Electricity (Multiple Choice) Question Paper

Time available: 20 minutes Marks available: 20 marks

www.accesstuition.com

1.	As th	As the temperature of a copper wire increases, its resistance					
	Α	remains constan	t.		0		
	В	increases.			0		
	С	decreases.			0		
	D remains constant at first and then decreases.			0			
						(Total 1 mar	k)
2.	A $12~\Omega$ resistor is connected across the terminals of a cell that has an emf of $2.0~V$ and an internal resistance of $4.0~\Omega.$						
	What is the terminal pd?						
	A	0.50 V	0				
	В	0.75 V	0				
	С	1.30 V	0				
	D	1.50 V	0				
						(Total 1 mar	k)


The diagram shows the currents in part of a circuit.

What is the potential difference between points **P** and **Q**?

- **A** 60 V
- B 70 V
- **c** 180 V
- **D** 270 V

The currents in the four wires obey the relationship I_1 + I_2 + I_3 + I_4 = 0

This relationship is an expression of the law of conservation of

A charge.

0

B energy.

- 0
- **C** potential difference.
- 0

D power.

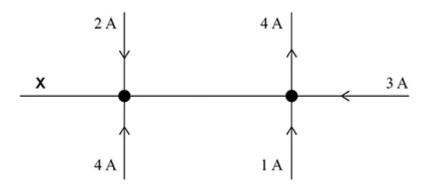
0

(Total 1 mark)

5.

Which value of resistance cannot be made by combining three $10\ \Omega$ resistors?

- **A** 3.3 Ω
- 0
- B 6.7Ω
- 0
- **C** 15 Ω
- 0
- **D** 25 Ω
- 0


The current in a metallic conductor is 1.5 mA.

How many electrons pass a point in the conductor in two minutes?

- **A** 1.1×10^{18}
- 0
- **B** 1.9×10^{19}
- 0
- **C** 1.4×10^{20}
- 0
- **D** 2.0×10^{29}
- 0

(Total 1 mark)

7. The diagram shows the currents in a set of wires.

What is the magnitude of the current at X?

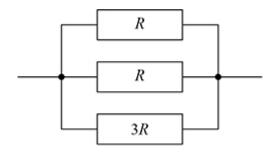
A zero

0

B 2 A

0

C 3 A


0

D 6 A

0

(Total 1 mark)

8. Resistors of resistance R, R and 3R are connected as shown.

What is the resistance of the arrangement?

 $A = \frac{3R}{7}$

0

 $B = \frac{7R}{3}$

0

 $c \frac{5R}{6}$

0

D $\frac{6R}{5}$

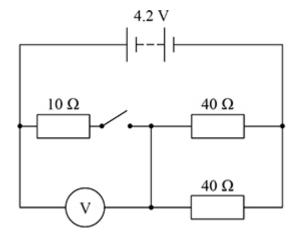
0

(Total 1 mark)

- 9. Superconductors are used to
 - A increase the strength of electricity cables.

0

B make light dependent resistors.

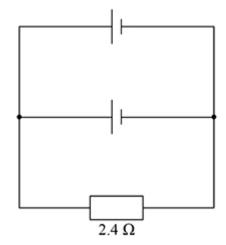

0

C produce strong magnetic fields.

0

D increase the rate of heat energy transfer.

- (Total 1 mark)
- **10.** The battery in this circuit has an emf of 4.2 V and negligible internal resistance.



What are the readings on the voltmeter when the switch is open (off) and when the switch is closed (on)?

	Open	Closed		
Α	0 V	2.1 V	0	
В	4.2 V	2.1 V	0	
С	0 V	1.4 V	0	
D	4.2 V	1.4 V	0	

(Total 1 mark)

Two identical batteries each of emf 1.5 V and internal resistance 1.6 Ω are connected in parallel. A 2.4 Ω resistor is connected in parallel with this combination.

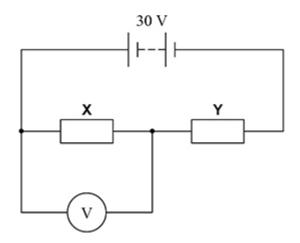
What is the current in the 2.4 Ω resistor?

- **A** 0.38 A
- 0

B 0.47 A

0

C 0.75 A


0

D 0.94 A

0

Two resistors **X** and **Y** are connected in series with a power supply of emf 30 V and negligible internal resistance.

The resistors are made from wire of the same material. The wires have the same length. \mathbf{X} uses wire of diameter d and \mathbf{Y} uses wire of diameter 2d.

What is the reading on the voltmeter?

A 10 V

0

B 15 V

0

C 20 V

0

D 24 V

0

(Total 1 mark)

13.

The capacity of a portable charger is rated in ampere hours (A h). A charger of capacity 1 A h can provide 1 A for 1 hour at its working voltage.

One charger has a capacity of 1800 mA h at a working voltage of 3.7 V.

What is the energy stored in this charger?

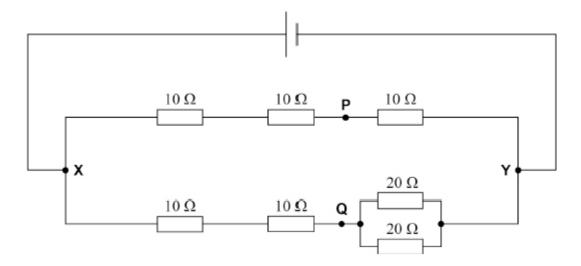
- **A** 6.5 kJ
- 0
- **B** 24 kJ
- 0
- **C** 400 kJ
- 0
- **D** 24 kJ
- 0

A filament lamp with resistance 12 Ω is operated at a power of 36 W.

How much charge flows through the filament lamp during 15 minutes?

- **A** 26 C
- 0
- **B** 1.6 kC
- 0
- **C** 2.7 kC
- 0
- **D** 6.5 kC
- 0

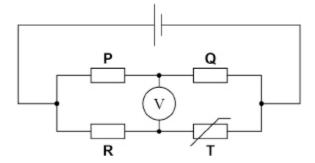
(Total 1 mark)


15.

A resistor with resistance R is made from metal wire of resistivity ρ . The length of the wire is L.

What is the diameter of the wire?

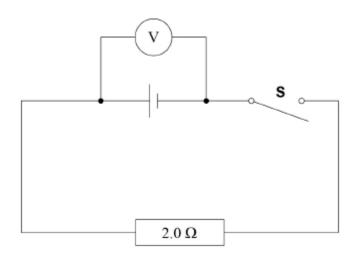
- A $\sqrt{\frac{2\rho R}{\pi L}}$
- 0
- B $\sqrt{\frac{2\rho L}{\pi R}}$
- 0
- c $2\sqrt{\frac{\rho L}{\pi R}}$
- 0
- D $2\sqrt{\frac{\rho R}{\pi L}}$
- 0


The potential difference between points ${\bf X}$ and ${\bf Y}$ is ${\it V}$.

What is the potential difference between P and Q?

- **A** zero
- 0
- B $\frac{V}{3}$
- 0
- $c \frac{V}{2}$
- 0
- D $\frac{2V}{3}$
- 0

In the circuit below, the voltmeter reading is zero.



When the temperature of the thermistor **T** is increased, the voltmeter reading changes.

Which change to the circuit will restore the voltmeter to zero?

- A a reduction in the emf of the cell
- **B** a reduction in the resistance of **P**
- **C** an increase in the resistance of **Q**
- **D** a reduction in the resistance of **R**

The reading on the voltmeter halves when switch ${\bf S}$ is closed.

What is the internal resistance of the cell?

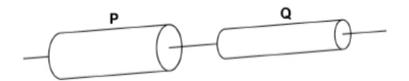
 $\bf A$ 0.50 $\bf \Omega$

0

B 1.0 Ω

0

 \boldsymbol{C} 2.0 Ω

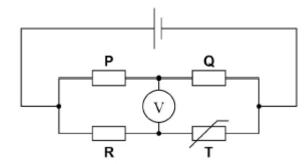

0

D 4.0 Ω

0

Two cylindrical wires **P** and **Q** are of equal length and made of the same material. The diameter of **P** is greater than that of **Q**.

P and **Q** are connected in series and the ends of this arrangement are connected to a power supply.


Which two quantities are the same for **P** and **Q**?

Α	potential difference across wire	resistivity	0
В	resistivity	current	0
С	current	resistance	0
D	resistance	potential difference across wire	0

(Total 1 mark)

20.

In the circuit below, the initial voltmeter reading is zero.

The temperature of the negative temperature coefficient thermistor **T** is then increased.

Which change to the circuit could restore the voltmeter reading to zero?

Α	Decreasing the resistance of R .	0
В	Increasing the resistance of R.	0
С	Decreasing the resistance of P .	0
D	Increasing the resistance of Q .	0