

A-Level Physics

Electromotive Force

Mark Scheme

Time available: 72 minutes Marks available: 55 marks

www.accesstuition.com

Mark schemes

1.	(a)	Use of power equation	
		OR	
		Power equation and $V = IR$	
		To give $R = 8.5 (\Omega) \checkmark$	1
	(b)	Calculation of parallel pair resistance = 5.0 Ω \checkmark	
		Calculation of circuit current = $6.2 / 5.0 = 1.24 \text{ A}$	
		emf = terminal pd + Ir = 6.2 + (1.24 × 2.5) \checkmark	
		9.3 V ✓ Allow ecf from (a) Allow alternative methods	3
	(c)	$A = \pi \ (d \ / \ 2)^2 = 2.84 \times 10^{-8} \checkmark$	
		Use of resistivity equation = $RA/l \checkmark$	
		To give 5.0 × 10 ⁻⁸ ✓ Allow POT error in MP1 And MP2	3
	(d)	Resistance increases ✓	
		Reduces current through lamp	
		Lamp dimmer 🗸	2
	(e)	(Resistance increases)	
		Reduces current in battery ✓	
		Reduces lost volts and increases terminal pd	
		lamp brighter. ✓ Give 1 max for arguments dealing with initial dimming of bulb when wire attached.	2

[11]

2.

(a)

Work done in moving 1 C of charge through the cell \checkmark 1.5 J of work is done in moving 1 C of charge through the cell \checkmark

OR

Amount of energy converted from other forms to electrical energy per 1 C of charge 🗸

1.5 J of energy converted from other forms to electrical energy per unit charge (passing across the emf) \checkmark

OR

Work done in moving 1 C of charge (whole way) round circuit \checkmark

1.5 J of work is done in moving 1 C of charge the (whole way) round circuit \checkmark

2nd marking point obtains both marks

Max 1 mark available for the following:

The emf is the terminal pd when there is no current in the cell (and this equals 1.5 V)

1.5 J of energy per 1 C of charge.

Allow a statement of Kirchhoff's 2nd law for 1 mark. Where the law is in symbol form, the meaning of the symbols must be stated. Need a clear communication of internal and external resistances.

(b) P = VI

And

(P) = 0.465 (W) ✓

Seen to more than 2 sf with supporting equation with subject seen in working

2

(c) Use of appropriate power equation to determine wasted power **or**

power dissipated in R = total power – their wasted power \checkmark

 $(P =) 0.40 W \checkmark$ Alternative for 1 mark: Use of $I = \frac{\varepsilon}{R+r}$ Or pd across $R = 1.5 - 0.65 \times 0.31$ or pd across R = 1.2985 (V) or total resistance = 1.5/0.31 or total resistance = 4.839 (Ω) or R = 4.2 (Ω) or $P = I^2 \times their R$ or $P = \frac{v^2}{R}$ using their V and $R \checkmark$

(d) Use of
$$E = P t$$

or $E = VI t$
Or
 $E = QV$ and $Q = It \checkmark$
Allow use of the equation with their values.
An answer of 3.5 x 10⁴ is worth 1 mark

 $(t =) 3.0(1) \ge 10^4 (s) \checkmark$

(e) MAX 3 from (1 to 4) or (5 to 8)

It is suitable, because: (1) Current required in lamp = 0.62 A or use of $I = \frac{p}{v}$ seen (2) Resistance of lamp = 2.11 Ω or use of $R = \frac{v^2}{p}$ seen \checkmark (3) current in each cell = 0.31 A \checkmark (4) lost volts = 0.2 V or lost volts = 0.65 x 0.31 \checkmark *Check the diagram in part (e) Must have the correct conclusion to award 4 marks.*

Conclusion: yes, terminal pd = 1.5 - 0.2 seen or terminal pd= $1.5 - 0.65 \times 0.4 / 1.3 \checkmark$

OR

- (5) total internal resistance = 0.325 Ω \checkmark
- (6) total resistance in circuit = 2.44 Ω \checkmark
- (7) Resistance of lamp = 2.11 $\Omega \checkmark$
- (8) pd splits in ratio of 0.325:2.11 ✓

Conclusion: yes, pd across lamp is $\frac{2.11 \times 1.5}{2.44}$ (= 1.3 V) seen \checkmark

Allow max 3 from a combination of two route [(2) and (7) worth total of 1 mark]

(e) (Cells must be added) in parallel \checkmark

Because:

more energy stored in the bank of cells / less power from each cell \checkmark

without increasing the voltage across the bulb (above 1.5 V)

or

3.

without increasing the terminal pd (above 1.5V) \checkmark

Must link the cells being added in parallel to one or both reason to gain three marks. Alternative:

- In parallel
- Current shared by cells
- Takes longer to convert the energy stored in each cell.

Alternative:

- In parallel
- Less internal resistance
- Less power / energy wasted

Cells in series statement means no marks can be obtained.

[14]

3

(a) (i) Voltmeter across terminals with nothing else connected to battery / no additional load. \checkmark

(ii) This will give zero / virtually no current \checkmark

1

Answer must clearly show power: εI and VI, with I cancelling out to give formula stated in the question \checkmark

(ii) Voltmeter connected across cell terminals \checkmark

Switch open, voltmeter records ε Switch closed, voltmeter records V Both statements required for mark \checkmark

> Candidates who put the voltmeter in the wrong place can still achieve the second mark providing they give a detailed description which makes it clear that:

To measure emf, the voltmeter should be placed across the cell with the external resistor disconnected

<u>And</u>

To measure V, the voltmeter should be connected across the external resistor when a current is being supplied by the cell

2

2

1

(c) Vary external resistor and measure new value of V, for at least 7 different values of external resistor \checkmark

Precautions - switch off between readings / take repeat readings (to check that emf or internal resistance not changed significantly) \checkmark

(d) Efficiency increases as external resistance increases \checkmark

Explanation Efficiency = Power in R / total power generated $I^2R/I^2(R + r) = R/(R + r)$ So as R increases the ratio becomes larger or ratio of power in load to power in internal resistance increases \checkmark

Explanation in terms of V and ε is acceptable

2

2

4. (a) mention of pd across internal resistance **or** energy loss in internal resistance **or** emf > $V \sqrt{}$

pd across internal resistance/lost volts increases with current **or** correct use of equation to demonstrate \checkmark

www.accesstuition.com

(b) (i) $y - intercept 1.52 V (\pm 0.01 V) \checkmark$

(ii) identifies gradient as *r* or use of equation \sqrt{r} substitution to find gradient or substitution in equation \sqrt{r} $r = 0.45 \pm 0.02 \Omega \sqrt{r}$

(c) (i) same intercept √
 double gradient (must go through 1.25, 0.40 ± 1.5 squares) √

- (ii) same intercept horizontal line 🗸
- (d) (i) (use of Q = It)

$$Q = 0.89 \times 15 = 13 \checkmark C \checkmark$$

(ii) use of $P = l^2 r \sqrt{2}$ $P = 0.89^2 \times 0.45$

P = 0.36 W √

- (a) (i) work (done)/energy (supplied) per unit charge (by battery) (1)
 (or pd across terminals when no current passing through cell or open circuit)
 - (ii) when switch is closed a **current flows** (through the battery) **(1)**

hence a pd/lost volts develops across the internal resistance (1)

(b) (use of $\varepsilon = V + Ir$)

5.

I = 5.8/10 = 0.58 (A) **(1)**

6.0 = 5.8 + 0.58*r* (1)

$$r = 0.2/0.58 = 0.34 \; (\Omega) \; (1)$$

1

3

2

1

2

2

1

2

[13]

(c) need large current/power to start the car (1) (or current too low)

internal resistance limits the current/wastes power(or energy)/reduces terminal pd/increases lost volts (1)