

A-Level Physics

Gravitational Fields

Mark Scheme

Time available: 77 minutes Marks available: 61 marks

www.accesstuition.com

Mark schemes

- 1.
- (a) **G** has a greater mass than **H** with a reason ✓₁

because the null point is closer to $\mathbf{H} \mathbf{\checkmark}_2$

 \checkmark_1 The reason can be the second mark

OR

Because the density of the field is greater around G

(b) The lines given tangential arrows that flow towards **G** and **H**. ✓

2

1

(c) $R = \left(\left\{ \frac{GM}{g} \right\}^{1/2} = \left\{ \frac{6.67 \times 10^{-11} \times 2.0 \times 10^{20}}{0.40} \right\}^{1/2} \right) = 1.8 \times 10^5 \text{ (m)} \checkmark$

1

(d) Sketch must pass through coordinates (R, 0.40), (2R, 0.10) and (3R, 0.044) \checkmark Must be within one small division of coordinates requested.

1

- (e) The area underneath represents the energy/work needed (for an object) to move from R to 2R \checkmark
 - of 1 kg / unit mass ✓

If no mark is scored then award a single mark for saying:

Area represents the gravitational potential difference between R and 2R

(f) Use of $F = \frac{GMm}{r^2}$ to find the force between **P** and **H** \checkmark_1 ($F_{(PH)} = 1.8 \times 10^{13} \text{ N}$)

(Calculation of the resultant force

$$F_{\text{total}} = (F_{(PH)}^2 + F_{(PG)}^2)^{1/2})$$

$$F_{\text{total}} = \left(\left\{ 1.8 \times 10^{13} \right\}^2 + \left\{ 6.4 \times 10^{12} \right\}^2 \right)^{1/2} \checkmark_2$$

$$F_{\text{total}} = 1.9 \times 10^{13} \checkmark_3$$

Use of
$$a = \frac{F}{m} = \frac{1.9 \times 10^{13}}{2.0 \times 10^{20}} = 9.5 \times 10^{-8} \text{ (m s}^{-2}) \checkmark_4$$

$$\checkmark_1 F_{(PH)} = \frac{6.67 \times 10^{-11} \times 3.0 \times 10^{25} \times 2.0 \times 10^{20}}{\left(1.5 \times 10^{11}\right)^2}$$

 \checkmark_2 Mark is for the use of the equation allowing for ecf from candidate's force calculation.

 \checkmark_3 Correct answer only, no ecf

 \checkmark_4 Allow ecf from F_{total}

(g) The resultant force is not (centripetal and) directed towards the centre of **H**.

OR

2.

A circular orbit does not follow a gravitational equipotential (owtte) ✓

The answer can focus on the conditions necessary for circular motion eg the need for a centripetal force.

Or

At different locations on a circular path the total gravitational potential energy is different which requires energy which is not provided.

[12]

1

(a) (centripetal) force = $m r (2 \pi / T)^2$ Or m r $(\omega)^2$ (is given by the gravitational) force = $G m M / r^2 \checkmark$ (mark for both equations)

(equating both expressions and substituting for ω if required) $T^2 = (4\pi^2 / GM) r^3 \checkmark (4\pi^2 / GM)$ is constant, the constants may be on either side of equation but T and r must be numerators)

First mark is for two equations (gravitational and centripetal)
The second mark is for combining.

(b) (use of $T^2 \propto r^3$ so $(T_P/T_E)^2 = (r_P/r_E)^3$) $(T_P/1.00)^2 = (5.91 \times 10^9/1.50 \times 10^8)^3$ \checkmark (mark is for substitution of given data into any equation that corresponds to the proportional equation given above)

$$(T_P^2 = 61163)$$

 $T_P = 250 \text{ (yr) } \checkmark (247 \text{ yr)}$

Answer only gains both marks

The calculation may be performed using data for the Sun in $T^2 = (4\pi^2 / GM) r^3$ easily spotted from $M_s = 1.99 \times 10^{30}$ kg giving a similar answer 247 – 252 yr.

(c) using $M (= g r^2 / G) = 0.617 \times (1.19 \times 10^6)^2 / 6.67 \times 10^{-11} \checkmark$ $M = 1.31 \times 10^{22} \text{ kg } \checkmark$ answer to 3 sig fig \checkmark (this mark stands alone)

The last mark may be given from an incorrect calculation but not lone wrong answer.

(d) Initial KE = $\frac{1}{2}$ (m) $1400^2 = 9.8 \times 10^5$ (m) J \checkmark Energy needed to escape = 7.4×10^5 (m) J \checkmark So sufficient energy to escape. \checkmark

OR For object on surface escape speed given by $7.4 \times 10^5 = \frac{1}{2} v^2$

escape speed = 1200 m s⁻¹ \checkmark (if correct equation is shown the previous mark is awarded without substitution) So sufficient (initial) speed to escape. \checkmark

OR escape velocity = $\sqrt{\frac{2GM}{R}}$ substituting *M* from part (c) \checkmark escape speed = 1200 m s⁻¹ \checkmark (1210 m s⁻¹) So sufficient (initial) speed to escape. \checkmark

OR escape velocity = $\sqrt{2Rg}$ substituting from data in (c) \checkmark Third alternative may come from a CE from (c)

$$(1.06 \times 10^{-8} \times (1.06 \times 10^{-8} \times \sqrt{\text{answer(c)}})$$

Conclusion must be explicit for third mark and cannot be awarded from a CE

[10]

3. (a) the work done per unit mass ✓

in moving from infinity to the point \checkmark

2

2

(b) Gravitational potential is defined as zero at ∞ \checkmark

(Forces attractive) so work must be done (on a mass) to reach ∞ (hence negative) ✓

2

(c) $V = -GM/r = 6.67 \times 10^{-11} \times 5.97 \cdot 10^{24} / 6.37 \times 10^{6} \checkmark$ = $-6.25 \times 10^{7} \text{ J kg}^{-1} \checkmark$

2

(d) in the plane of the equator

always above the same location on the earth

having the same period as the earth / 24 hours

√√any two lines

2

(e) $V = -GM/r = 6.67 \times 10^{-11} \times 5.97 \times 10^{24} / 4.23 \times 10^7 = -9.41 \times 10^6 \text{ J kg}^{-1} \checkmark$

 $E_p = \Delta V \times m = = (6.26 - 0.94) \times 10^7 \times 1200 \checkmark$

 $= 6.38 \times 10^{10} \,\mathrm{J}\,\checkmark$

3

(f) radius must increase ✓

velocity gets smaller ✓

reference to R^3 is proportional to $T^2 \checkmark$

reference (from circular motion) v^2 is proportional to $1/r \checkmark$

[15]

4.

(a) Idea that both astronaut and vehicle are travelling at same (orbital) speed or have the same (centripetal) acceleration / are in freefall

Not falling at the same speed

В1

No (normal) reaction (between astronaut and vehicle)

В1

(b) (i) Equates centripetal force with gravitational force using appropriate formulae

E.g.
$$\frac{GMm}{r^2} = \frac{mv^2}{r}$$
 or $mr\omega^2$

В1

Correct substitution seen e.g. $v^2 = \frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{\text{any value of radius}}$

В1

(Radius of) 7.28×10^6 seen or $6.38 \times 10^6 + 0.9 \times 10^6$

В1

7396 (m s⁻¹) to at least 4 sf Or $v^2 = 5.47 \times 10^7$ seen

В1

(ii)
$$\Delta PE = 6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 1.68 \times 10^{4} (1 / (7.28 \times 10^{6}) - 1 / (6.78 \times 10^{6}))$$

C1

$$-6.8 \times 10^{10} \text{ J}$$

C1

$$\Delta KE = 0.5 \times 1.68 \times 10^{4} \times (7700^{2} - 7400^{2}) = 3.81 \times 10^{10} \text{ J}$$

C1

$$\Delta KE - \Delta PE = (-) 2.99 \times 10^{10} \text{ (J)}$$

A1

OR

Total energy in original orbit shown to be $(-)GMm / 2r$ or $mv^{2} / 2 - GMm / r$

C1

Initial energy
$$= -6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 1.68 \times 10^{4} / (2 \times 7.28 \times 10^{6})$$

$$= 4.59 \times 10^{11}$$

C1

Final energy
$$= -6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 1.68 \times 10^{4} / (2 \times 6.78 \times 10^{6})$$

$$= 4.93 \times 10^{11}$$

3.4 × 10^{10} (J)

Condone power of 10 error for C marks

www.accesstuition.com

[10]

(a)	(١)	Use of $F = GMm/r^2$	
			C1
		Allow 1 for -correct formula quoted but forgetting square in substitution	
		Correct substitution of data	
		-missing m in substitution	M1
		491 (490)N	
		-substutution with incorrect powers of 10 Condone 492 N,	A1
	(ii)	Up and down vectors shown (arrows at end) with labels	
		allow W, mg (not gravity); R allow if slightly out of line / two vectors shown at feet	B1
		up and down arrows of equal lengths	
			B1
		condone if colinear but not shown acting on body In relation to surface W ≤ R (by eye) to allow for weight vectors starting in middle of the body Must be colinear upless two arrows shown in which case R	
		Must be colinear unless two arrows shown in which case R ½ W vector(by eye)	Vectors
(b)	(i)	Speed = $2\pi r/T$	
		Max 2 if not easy to follow	B1
		2π6370000 / (24 × 60 × 60)	
			B1
		463 m s^{-1}	
		Must be 3sf or more	B1
	(ii)	Use of $F = mv^2/r$	
			C1

www.accesstuition.com

Allow 1 for use of $F = mr\omega^2$ with $\omega = 460$

1.7 (1.66 - 1.68) N

Α1

(iii) Correct direction shown
(Perpendicular to and toward the axis of rotation)
NB – not towards the centre of the earth

B1

(c) Force on scales decreases / apparent weight decreases Appreciates scale reading = reaction force

C1

The reading would become 489 (489.3)N or reduced by 1.7 N)

A1

Some of the gravitational force provides the necessary centripetal force

B1

or
$$R = mg - mv^2/r$$

[14]