

A-Level Physics Gravitational Fields (Multiple Choice) Question Paper

Time available: 28 minutes Marks available: 20 marks

www.accesstuition.com

A planet of radius R and mass M has a gravitational field strength of g at its surface.

Which row describes a planet with a gravitational field strength of 4g at its surface?

	Radius of planet	Mass of planet	
Α	2 <i>R</i>	2 <i>M</i>	0
В	$R\sqrt{2}$	$\frac{M}{2}$	0
С	$\frac{R}{\sqrt{2}}$	$\frac{M}{2}$	0
D	$\frac{R}{\sqrt{2}}$	2 <i>M</i>	0

(Total 1 mark)

2.

The Moon orbits the Earth in 27 days.

What is the angular speed of the Moon's orbit?

- **A** $4.3 \times 10^{-7} \text{ rad s}^{-1}$
- 0
- **B** $2.7 \times 10^{-6} \text{ rad s}^{-1}$
- 0
- **C** $3.7 \times 10^{-2} \text{ rad s}^{-1}$
- 0
- $\mbox{\bf D} \mbox{ } 2.3 \times 10^{-1} \ \mbox{rad s}^{-1}$
- 0

(Total 1 mark)

3.

The radius of the Earth is R and the acceleration due to gravity at the surface of the Earth is g.

What is the escape velocity for a mass m at the surface of the Earth?

- A \sqrt{gR}
- 0
- B $\sqrt{2gR}$
- 0
- C $\sqrt{2mgR}$
- 0
- D $\sqrt{\frac{2gR}{m}}$
- 0

- 4.
- A planet has a mass M and a radius R.
- Loose material at the equator only just remains in contact with the surface of the planet.
- This is because the speed at which the planet rotates is very large.

What is the period of rotation of the planet?

- A $2\pi\sqrt{\frac{R^2}{GM}}$
- 0
- $B = 2\pi \sqrt{\frac{GM}{R^2}}$
- 0
- $C = 2\pi \sqrt{\frac{R^3}{GM}}$
- 0
- D $2\pi\sqrt{\frac{GM}{R^3}}$
- 0

(Total 1 mark)

Satellites **N** and **F** have the same mass and move in circular orbits about the same planet. The orbital radius of **N** is less than that of **F**.

Which is smaller for **N** than for **F**?

- A the gravitational force on the satellite
- 0

B the speed of the satellite

0

- **C** the kinetic energy of the satellite
- 0

D the orbital period of the satellite

0

The graph shows how the gravitational potential V varies with the vertical distance d from the surface of the Earth.

What does the gradient of the graph represent at the surface of the Earth?

A potential energy

0

B mass of the Earth

0

c magnitude of the gravitational constant

- 0
- **D** magnitude of the gravitational field strength
- 0

(Total 1 mark)

7.

What is the angular speed of a satellite in a geostationary orbit around the Earth?

- **A** $1.2 \times 10^{-5} \text{ rad s}^{-1}$
- 0
- **B** $7.3 \times 10^{-5} \text{ rad s}^{-1}$
- 0
- **C** $4.4 \times 10^{-3} \text{ rad s}^{-1}$
- 0
- **D** $2.6 \times 10^{-1} \text{ rad s}^{-1}$
- 0

8. An object moves freely at 90° to the direction of a gravitational field.

The acceleration of the object is

A zero.

0

B opposite to the direction of the gravitational field.

0

C in the direction of the gravitational field.

0

D at 90° to the direction of the gravitational field.

0

(Total 1 mark)

9. The distance between the Sun and the Earth is 1.5×10^{11} m

What is the gravitational force exerted on the Sun by the Earth?

A $3.5 \times 10^{22} \text{ N}$

0

B $1.7 \times 10^{26} \text{ N}$

0

C $5.3 \times 10^{33} \text{ N}$

0

D $8.9 \times 10^{50} \text{ N}$

0

(Total 1 mark)

10. The diagram shows equipotential lines near a group of asteroids.

www.accesstuition.com

Which arrow shows the direction of the gravitational field at X?

A ↑

0

В ↓

0

C ←

0

 $D \rightarrow$

0

(Total 1 mark)

Planet **N** has a gravitational potential -V at its surface. Planet **M** has double the density and double the radius of planet **N**. Both planets are spherical and have uniform density.

What is the gravitational potential at the surface of planet M?

A −16*V*

0

B –8V

0

C –4V

0

D -0.2V

0

(Total 1 mark)

Satellites **X** and **Y** orbit the Earth at distances R and 4R respectively, as shown in the diagram.

Which statement is incorrect?

- A The speed of Y is greater than the speed of X
- B The time period of Y is greater than the time period of X.
- The potential energy of **Y** is greater than the potential energy of **X**.
- The gravitational force acting on **Y** is less than the gravitational force acting on **X**.

(Total 1 mark)

Two planets **X** and **Y** are in concentric circular orbits about a star **S**. The radius of the orbit of **X** is *R* and the radius of orbit of **Y** is 2*R*.

The gravitational force between ${\bf X}$ and ${\bf Y}$ is F when angle ${\bf SXY}$ is 90°, as shown in the diagram.

What is the gravitational force between **X** and **Y** when they are nearest to each other?

A 2 *F*

13.

- **B** 3 *F*
- **C** 4 *F*
- **D** 5 *F*

Which of the following statements about Newton's law of gravitation is correct?

Newton's gravitational law explains

A the origin of gravitational forces.

B why a falling satellite burns up when it enters the Earth's atmosphere.

C why projectiles maintain a uniform horizontal speed.

0

D how various factors affect the gravitational force between two particles.

15.

A geosynchronous satellite is in a constant radius orbit around the Earth. The Earth has a mass of 6.0×10^{24} kg and a radius of 6.4×10^6 m.

What is the height of the satellite above the Earth's surface?

- **A** $1.3 \times 10^7 \,\mathrm{m}$
- **B** $3.6 \times 10^7 \,\mathrm{m}$
- **C** $4.2 \times 10^7 \,\mathrm{m}$
- **D** $4.8 \times 10^7 \,\mathrm{m}$

(Total 1 mark)

(Total 1 mark)

16.

A satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass M.

Which line, **A** to **D**, in the table gives correct expressions for the centripetal acceleration a and the speed v of the satellite?

	Centripetal acceleration a	Speed v
A	$\frac{GM}{2r}$	$\sqrt{\frac{GM}{2r}}$
В	$\frac{GM}{2r}$	$\sqrt{\frac{GM}{r}}$
С	$\frac{GM}{r^2}$	$\sqrt{\frac{GM}{2r}}$
D	$\frac{GM}{r^2}$	$\sqrt{\frac{GM}{r}}$

(Total 1 mark)

Two stars of mass *M* and 4*M* are at a distance *d* between their centres.

The resultant gravitational field strength is zero along the line between their centres at a distance y from the centre of the star of mass M.

What is the value of the ratio $\frac{y}{d}$?

- A $\frac{1}{2}$
- **B** $\frac{1}{3}$
- **c** $\frac{2}{3}$
- D $\frac{3}{4}$

Mars has a diameter approximately 0.5 that of the Earth, and a mass of 0.1 that of the Earth. The gravitational potential at the Earth's surface is -63 MJ kg⁻¹.

What is the approximate value of the gravitational potential at the surface of Mars?

- **A** −13 MJ kg⁻¹
- **B** -25 MJ kg⁻¹
- **C** -95 MJ kg^{-1}
- **D** -320 MJ kg^{-1}

(Total 1 mark)

19.

The diagram shows two points, P and Q, at distances r and 2r from the centre of a planet.

The gravitational potential at P is -16 kJ kg $^{-1}$. What is the work done on a 10 kg mass when it is taken from P to Q?

- **A** 120 kJ
- **B** $-80 \, kJ$
- **C** + 80 kJ
- **D** + 120 kJ

(Total 1 mark)

20.

Two satellites, P and Q, of the same mass, are in circular orbits around the Earth. The radius of the orbit of Q is three times that of P. Which one of the following statements is correct?

- A The kinetic energy of P is greater than that of Q.
- **B** The weight of P is three times that of Q.
- **C** The time period of P is greater than that of Q.
- **D** The speed of P is three times that of Q.