A-Level Physics **Induced Fission** **Question Paper** Time available: 66 minutes Marks available: 47 marks www.accesstuition.com | | is fuel in which the ratio of U-235 to U-238 has been artificially increased from that found in rally-occurring ore. | | |-----|--|-----| | (a) | Describe what happens when neutrons interact with U-235 and U-238 nuclei in a thermal nuclear reactor. | (3) | | (b) | The amounts of U-235 and U-238 in the ore decrease due to radioactive decay at different rates. | | | | A sample of uranium ore today contains 993 g of U-238
The mass of U-238 in this sample was greater 2.00 \times 10 ⁹ years ago. | | | | Show that the mass of U-238 in this sample at that time was about 1.4 kg. | | | | decay constant of U-238 = $1.54 \times 10^{-10} \text{ year}^{-1}$ | | A thermal nuclear reactor uses enriched uranium as its fuel. 1. (2) | | (c) | A thermal nuclear reactor requires a minimum of 3.0% of its uranium mass to be U-235 | | |----|-------|--|--------------| | | | The ratio of U-235 to U-238 in the ore has changed over time. 2.00×10^9 years ago, the sample in part (b) contained 52 g of U-235 | | | | | Deduce whether the sample had a high enough U-235 content to be used in a reactor 2.00×10^9 years ago. | (Total 6 ma | (1)
arks) | | 2. | A the | ermal nuclear reactor uses a moderator to lower the kinetic energy of fast-moving neutrons. | | | | (a) | Explain why the kinetic energy of neutrons must be reduced in a thermal nuclear reactor. | | | | | | | | | | | | | | | | (1) | | | (b) | As a result of a collision with an atom of a particular moderator, a neutron loses 63% of its kinetic energy. | | | | | A neutron has an initial kinetic energy of 2.0 MeV. | | | | | Calculate the kinetic energy of the neutron after five collisions. | | | | | | | | | | | | | | | kinetic energy = eV | | | The kinetic energy of a neutron in a thermal nuclear reactor is reduced from about 2 Nabout 1 eV. | MeV to | |--|--| | · · · · · · · · · · · · · · · · · · · | per of | One fission process which can occur in a thermal nuclear reactor is represented by the equation | ie | | | | | ${}^{235}_{92}U + {}^{1}_{0}n = {}^{142}_{54}Xe + {}^{90}_{38}Sr + 4{}^{1}_{0}n$ | | | $^{235}_{92}U+^1_0n=^{142}_{54}Xe+^{90}_{38}Sr+4^1_0n$ Calculate in MeV the energy released in this fission process. | | | 72 0 31 30 0 | | | Calculate in MeV the energy released in this fission process. | | | Calculate in MeV the energy released in this fission process. mass of $^{235}_{92}U = 235.044 \text{ u}$ | | | E t | Explain why the number of collisions needed to do this depends on the nucleon number the moderator atoms. One fission process which can occur in a thermal nuclear reactor is represented by the second content of the number of collisions needed to do this depends on the nucleon number of collisions needed to do the nee | energy released = _____ MeV (3) | (e) | Many magazine and newspaper articles focus on the risks of using nuclear power. | | |------|---|----------------------| | | State three benefits of using nuclear power. | | | | 1 | | | | | | | | | | | | 2 | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | (To | tal 11 n | | | Core of a thermal nuclear reactor contains a number of components that are exposed to ing neutrons. | | | | core of a thermal nuclear reactor contains a number of components that are exposed to | | | movi | core of a thermal nuclear reactor contains a number of components that are exposed to ing neutrons. | | | movi | core of a thermal nuclear reactor contains a number of components that are exposed to ing neutrons. State what happens to a neutron that is incident on the moderator. | | | movi | core of a thermal nuclear reactor contains a number of components that are exposed to ing neutrons. State what happens to a neutron that is incident on the moderator. | | | movi | core of a thermal nuclear reactor contains a number of components that are exposed to ing neutrons. State what happens to a neutron that is incident on the moderator. | tal 11 m
O | | movi | core of a thermal nuclear reactor contains a number of components that are exposed to ing neutrons. State what happens to a neutron that is incident on the moderator. | | | movi | core of a thermal nuclear reactor contains a number of components that are exposed to ing neutrons. State what happens to a neutron that is incident on the moderator. | | | A slow-moving neutron is in collision with a nucleus of an atom of the fuel which cause fission. | S | |--|---| | Describe what happens in the process. | · | | | | | | | | (c) | | e at various stages of its treatment. answer should include: | |------|---| | roui | the main source of the most dangerous waste a brief outline of how waste is treated problems faced in dealing with the waste, with suggestions for overcoming these problems. | | | | | | | | | | | | | | | (То | www.accesstuition.com 4. (2) | (b) | (i) | When a $^{235}_{92}$ U nucleus absorbs a slow-moving neutron and undergoes fission one possible pair of fission fragments is technetium $^{112}_{43}$ Tc and indium $^{122}_{49}$ In. Complete the following equation to represent this fission process. | | |-----|-------|---|-----| | | | ${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{43}^{112}Tc + {}_{49}^{122}In + \dots$ | (1) | | | (ii) | Calculate the energy released, in $MeV,$ when a single $^{235}_{\ 92}U$ nucleus undergoes fission in this way. | | | | | binding energy per nucleon of $^{235}_{92}U$ = 7.59 MeV | | | | | binding energy per nucleon of ${}^{112}_{43}\text{Tc}$ = 8.36 MeV | | | | | binding energy per nucleon of $^{122}_{49}$ In = 8.51 MeV | | | | | | | | | | energy released MeV | (3) | | | (iii) | Calculate the loss of mass when a $^{235}_{92}\mathrm{U}$ nucleus undergoes fission in this way. | | | | | | | | | | loss of mass kg | (2) | (c) (i) On the figure below sketch a graph of neutron number, N, against proton number, Z, for stable nuclei. (1) | | (ii) | With reference to the figure, explain why fission fragments are unstable and explain what type of radiation they are likely to emit initially. | |-----|-------|---| (Total 12 | | (a) | | ribe the changes made inside a nuclear reactor to reduce its power output and explain process involved. | | | | | | | | | | (b) | State | e the main source of the highly radioactive waste from a nuclear reactor. | | | | | | (c) | | nuclear reactor, neutrons are released with high energies. The first few collisions of a ron with the moderator transfer sufficient energy to excite nuclei of the moderator. | | | (i) | Describe and explain the nature of the radiation that may be emitted from an excited nucleus of the moderator. | | | | | | | | | | (ii) | The subsequent collisions of a neutron with the moderator are elastic. | | |------|--|-----------------| | | Describe what happens to the neutrons as a result of these subsequent coll with the moderator. | isions | | | | | | | | | | | | | | | | (2) | | | | (Total 7 marks) |