

A-Level Physics

Length Contraction

Mark Scheme

Time available: 45 minutes Marks available: 26 marks

1. (a) (i) speed of light (in free space) independent of motion of source (1) and of motion of observer (1) [alternative (i)
speed of light is same in all frames of reference (1)]
(ii) laws of physics have same form in all inertial frames (1) inertial frame is one in which Newton's $1^{\text {st }}$ law of motion obeyed (1) laws of physics unchanged in coordinate transformation from one inertial frame of reference to any other inertial frame (1)
(max 4)
(b)
(i) $m\left(=m_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}\right)=1.88 \times 10^{-28}\left(1-(0.996)^{2}\right)^{-\frac{1}{2}}$
$=2.10 \times 10^{-27} \mathrm{~kg}(1)$
(ii) $t_{0}=2.2 \times 10^{-6} \mathrm{~s}$
$t\left(=t_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}\right)=2.2 \times 10^{-6}\left(1-(0.996)^{2}\right)^{-\frac{1}{2}}(\mathrm{~s})(1)$

$$
\begin{equation*}
=2.46 \times 10^{-5}(\mathrm{~s})(1) \tag{1}
\end{equation*}
$$

$s\left(=v t=3.00 \times 10^{8} \times 0.996 \times 2.46 \times 10^{-5}\right)=7360 \mathrm{~m}(1)$
[alternative (ii)
$l\left(=v t=0.996 \times 3.0 \times 10^{8} \times 2.2 \times 10^{6}\right)=657(\mathrm{~m})$
correct substitution of l in $l=l_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}$
$l_{0}\left(=\frac{l}{\sqrt{1-\frac{v^{2}}{c^{2}}}}\right)=\frac{657}{\sqrt{1-0.996^{2}}}$ (1)
$l_{0}=7360 \mathrm{~m}(1)$
2. (a) (i) $l=\left(v t=1.00 \times 10^{8} \times 15 \times 10^{-9}\right)=1.50 \mathrm{~m}$ (1)
(ii) $\left(l=l_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}\right)$
$1.50=l_{0} \sqrt{1-\frac{\left(1.00 \times 10^{8}\right)^{2}}{\left(3.00 \times 10^{8}\right)^{2}}}$
$l_{0}\left(=\frac{1.50}{0.943}\right)=1.59 \mathrm{~m}(1)$
(b) (i) $m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$

$m\left(\right.$ or $\left.\frac{m_{0}}{\sqrt{1-\frac{\left(1.00 \times 10^{8}\right)^{2}}{\left(3.00 \times 10^{8}\right)^{2}}}}\right)=1.06 m_{0}$
[or $=1.06 \times 1.67 \times 10^{-27}$ or $\left.1.77 \times 10^{-27} \mathrm{~kg}\right](1)$
kinetic energy $=\left(m-m_{0}\right) c^{2}(1)$
[or $=0.06 m_{0} c^{2}$ or $0.06 \times 1.67 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}$]
$=9.1 \times 10^{-12}(\mathrm{~J})(1)$
(ii) total k.e. $=\left(10^{7} \times 9.1 \times 10^{-12}\right)=9.1 \times 10^{-5}(\mathrm{~J})(1)$
k.e. per second $\left(=\frac{9.1 \times 10^{-5}}{1.5 \times 10^{-9}}\right)=6080 \mathrm{~W}$
3.
(a) (i) (use of $v=\frac{d}{t}$ gives) $v=\frac{240}{0.84 \times 10^{-6}}=2.8(6) \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ (1)
(ii) actual length $=240 \mathrm{~m}$ (1)

$$
\text { (use of } l=l_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2} \text { gives) }
$$

length in particle frame, $l=240\left(1-\frac{2.86^{2}}{3^{2}}\right)^{1 / 2}$
(allow C.E. for value of v)

$$
l=(240 \times 0.30)=72(.5) \mathrm{m}(
$$

(b) time between two events depends on speed of observer
[or $t=t_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}$ or rocket time depends on speed of traveller](1)
traveller's journey time is the proper time between start and stop
[or t_{0} is the proper time or t is the time on Earth] (1)
journey time measured on Earth > journey time measured by traveller
[or $t>t_{0}$ or rocket time slower / less than Earth time] (1) traveller younger than twin on return to Earth (1)

