

Longitudinal and Transverse Waves

Mark Scheme

Time available: 65 minutes Marks available: 48 marks

Mark schemes

1. (a) smooth line drawn within half grid square of points \checkmark
minimum between 32.6 and $32.8 \mathrm{~cm} \checkmark$
(b) value of their minimum (cm) \checkmark

Within a half grid square
(c) doubles 0.2 OR calculates percentage uncertainty for 0.2 (half range) \checkmark Correct answer earns both marks
0.8 (\%) \checkmark CAO
(d) recognises that node-to-node spacing $=\lambda / 2 \checkmark$
recognises the need to divide by $8 \checkmark$
$2.36 \times 10^{9}(\mathrm{~Hz}) \checkmark$ Condone use of 7 or 9 3 sf required
For example:
$\lambda=\frac{0.509 \times 2}{8}$ or $0.127(25) \mathrm{m}$ seen; top line earns,$\sqrt{ }$ and bottom line earns ${ }_{2} \sqrt{ }$
$f\left(=\frac{3 \times 10^{8} \times 8}{0.509 \times 2}\right)=2.36 \times 10^{9}(\mathrm{~Hz})$ earns all 3 marks
$f\left(=\frac{3 \times 10^{8} \times 7}{0.509 \times 2}\right)=2.06 \times 10^{9}$ earns 2 marks
$f\left(=\frac{3 \times 10^{8} \times 9}{0.509 \times 2}\right)=2.65 \times 10^{9}$ earns 2 marks
Allow 2 marks for 4.72×10^{9} (must be 3 sf)
(e) (microwaves are) polarised \checkmark
2. (a) Max 2 from: $\checkmark \checkmark$
(Because) the refractive index of water is greater than air (and) the angle of incidence is greater than the critical angle total internal reflection (of laser beam) occurs

Allow optical density for refractive index.
Allow answer given as a diagram.
(b) Use of $n=\frac{c}{c_{8}}$ eg $c_{s}=\frac{3.00 \times 10^{8}}{1.33} \checkmark$
$2.26 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \checkmark$
3 sf answer from some relevant working \checkmark
(c) $49\left({ }^{\circ}\right) \checkmark$

Do not allow 1 sf answer.
(d) The mark scheme gives some guidance as to what statements are expected to be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2) and 5 or 6 mark (L3) answer. Guidance provided in section 3.10 of the 'Mark Scheme Instructions' document should be used to assist in marking this question

Mark	Criteria
6	Both functions and dispersion problems discussed. No significant error or inconsistency.
5	Both functions and dispersion problems discussed. There may be some significant error or inconsistency.
4	Functions or dispersion problems described. No significant error or inconsistency.
3	Functions or dispersion problems described. There may be some significant error or inconsistency.
2	Both X and Y named and a function of one given; or A function of X and Y given, but only one named
1	X and Y identified by name or function
0	No relevant analysis

Level 2 max if dispersion modes confused in descriptions.
The following statements are likely to be present.

Names

\boldsymbol{X} is Core
\boldsymbol{Y} is Cladding

Functions

\boldsymbol{X} :
Propagates/Guides the wave/light
By TIR
(with) Iow attenuation/absorption
Refractive index of core > cladding
Y :
Protects core from damage
Prevents cross talk between touching fibres
Provides 'clean' boundary for TIR
Dispersion problems
Both: Cause pulse broadening/limited bandwidth
Material: different wavelengths have different speeds due to different refractive indices within the core - use monochromatic beam

Modal: different paths have different lengths so effective time along fibre differs - use single-mode fibre (narrow core/small Δn between core and cladding)
(e) Max 2 from: $\checkmark \checkmark$

Allow responses shown on diagram.
Light may encounter impurities at different positions/angles
Light may encounter different number of impurities
Allow "different impurities".
Light may encounter different sizes of impurities
Angle of incidence may become less than critical angle
Don't accept "critical angle changes"
Bending may cause cracks in the core/cladding
Light may be refracted (more/differently)
(f) Transverse - displacement/oscillations/vibrations at right angles/(perpendicular) to direction of energy transfer \checkmark

Condone "direction of wave" once.
1 mark for correct reference to difference in polarisation.
Longitudinal - displacement/oscillations/vibrations along/(parallel to) direction of energy transfer \checkmark

Treat references to P and S wave as neutral.
(b) $\quad A=4.2(\mathrm{~mm})$ read from graph \checkmark
$\mathrm{T}=2.0(\mathrm{~ms})$ read from graph \checkmark
$\left(a_{\max }=4.2 \times 10^{-3} \times\left(2 \times \pi /\left(2 \times 10^{-3}\right)\right)^{2}\right.$
$4.1(5) \times 10^{4}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \checkmark$ (Do not allow 4.2)
Condone power of ten error in A and/or T but not in final answer.
Evidence for T might be seen in equation, as 500 (f).
Only allowed ecf for max 2 is use of 4.1 mm for A , giving 4.0×10^{4} ($m \mathrm{~s}^{-2}$)
(c) longitudinal
(they) oscillate along direction of energy transfer \checkmark
Both required for 1 mark
Condone "vibrate" for oscillate.
Condone 'travel' for transfer
4. (a) Rotate aerial in vertical plane \checkmark

When aerial vertical signal is a maximum
When aerial horizontal signal is a minimum \checkmark
Max occurs when aerial aligned with plane of polarisation of microwave \checkmark
The first mark is for what needs to be done
The second mark is for what is measured
The third mark is for the link to polarisation
(b) Received signal goes through series of max and min \checkmark

Reflected and direct microwaves interfere \checkmark
Path length of reflected wave/path difference increases as plate moved \checkmark
Phase difference between reflected and direct waves changes (so signal strength changes.) \checkmark

First mark is for what is observed
Accept 'both' for 'reflected and direct'
If no other mark given, 1 mark can be awarded for mention of interference/ superposition/ out of phase
(c) Equation only valid if slit-screen distance is a lot greater than slit separation \checkmark Allow arguments in terms of angles
Allow 0.45 m for slit-screen distance
Allow use of standard symbols
(d) Maximum path length for first slit
$=\sqrt{ }\left(0.45^{2}+(0.25-0.06)^{2}\right)$
$=0.49 \mathrm{~m} \boldsymbol{V}_{1}$
MP1 is for one path length correct
MP2 is for both path lengths correct
Max path length for second slit
$=\sqrt{ }\left(0.45^{2}+(0.25+0.06)^{2}\right)$
$=0.55 \mathrm{~m} \sqrt{2}$
MP3 is for determination of path difference and conclusion.
Path difference $=0.55-0.49=0.06 \mathrm{~m}$
Which is greater than half a wavelength - so yes $\sqrt{3}_{3}$
Alternative for MAX2
Young equation used to determine fringe separation. \checkmark_{12} Idea that fringe separation $<0.25 \mathrm{~m}$ so wavelength can be determined. $\sqrt{3}$
5. (a) (wave) B \checkmark
(the parts of the) spring oscillate / move back and forth in direction of / parallel to wave travel
OR
mention of compressions and rarefactions \checkmark
Second mark can only be scored if first mark is scored
(ii) wave A: arrow vertically upwards \checkmark
wave B: arrow horizontally to the left \checkmark
(c) (transmitted radio waves are often) polarised \checkmark aerial (rods) must be aligned in the same plane (of polarisation / electric field) of the wave \checkmark

