

A-Level Physics

Magnetic Fields

Mark Scheme

Time available: 74 minutes Marks available: 50 marks

1. (a) Core - links the magnetic flux/field from the primary coil to the secondary coil \checkmark_{1} owtte

Secondary coil - (a conductor) has a varying magnetic flux/field passing through/linking with it $\sqrt{2}$ owtte
to induce an emf determined by the number of turns in the primary and secondary coils \checkmark_{3} owtte
\checkmark_{1} The word 'links' can be replaced with channels/directs /concentrates/focuses.
\checkmark_{2} 'varying' is important for this mark.
\checkmark_{3} induction and reference to turns ratio both must be mentioned.
(b) The sheets of material \mathbf{M} are made from insulator/high resistivity material which prevents/limits eddy currents from flowing in the core. \checkmark_{1}
(soft) iron is used because it efficiently links the magnetic field or it magnetises and demagnetises easily \checkmark_{2}
thin sheets of iron are used so smaller emfs are induced in the core (which increases the efficiency) $\sqrt{ } 3$
thin sheets of iron are used so resistance is high causing lower currents (which increases the efficiency) \checkmark_{4}
$\checkmark{ }_{2} A$ reference to the benefit of using iron must be made (repeating the function of the core is not enough)
Any 3 points gain the marks; however, if \checkmark_{3} and \checkmark_{4} are both used one must refer to the resulting increase in efficiency

3 Max
(c) If the voltage is lower/33 kV then power is transmitted at high current. So energy is wasted/lost in the cable by $I^{2} r$ heating. \checkmark_{1} owtte

If the voltage is made too high this will create major insulation/isolation difficulties. $\sqrt{2}$ owtte
$\checkmark{ }_{2}$ higher pylons, transformers that have better insulation against spark over, more costly equipment
(d) Use of efficiency $\eta=\frac{\text { power }_{\text {out }}}{\text { power }_{\text {in }}}$ once \checkmark^{1}

Use of $I=P / V$ once at any point $\sqrt{2}^{2}$
$I=3200$ (A) (correct answer only, no ecf) $\sqrt{3}$
$\checkmark 1$ examples could be:
power at $132 \mathrm{kV}=72 / 0.98=73.5 \mathrm{MW}$
Or
at transmission line start $=73.5 / 0.94=78.2$
MW
Or
at $25 \mathrm{kV}=78.2 / 0.98=79.8 \mathrm{MW}$
Or in single stage
Power at $\left.25 \mathrm{kV}=72 /\left(0.94 \times 0.98^{2}\right)=79.8 \mathrm{MW}\right)$
$\checkmark{ }_{2}$ expect $I=79.8 \times 10^{6} / 25 \times 10^{3}=3200 \mathrm{~A}$
2. (a) Magnetic flux density at $0.070 \mathrm{~m}=0.07 \pm 0.005 \mathrm{~T} \checkmark$
(use of flux linkage $N \Phi=B A N$
$=0.07 \times 3.5 \times 10^{-5} \times 200$)
Flux linkage $=4.9 \pm 0.2 \times 10^{-4}$ (Wb-turns) \checkmark
shown calculated to at least 2 sig figs
(b) (As the coil moves) there is a rate of change of flux through the coil \checkmark_{1} (owtte)

The induced emf is proportional to the rate of change of flux (linkage) so the (magnitude) of the emf decreases \checkmark_{2} (owtte)
\checkmark_{1} The first part ie the induced emf is proportional to the rate of change of flux linkage may be given in a number of ways eg emf $=$ $N \frac{\Delta \phi}{\Delta t}$ or $N \frac{\Delta(B A)}{\Delta t}$ or simply saying 'because of Faraday's law'.
Ignore the sign of the emf
$\checkmark 2$ It's not enough to say the emf decreases
Connection between rate of change of flux and change of flux with distance must be made
(c) Finding a gradient from a tangent \checkmark_{1}

Attempting to use Faraday's law
$\mathrm{emf}=N \frac{\Delta(B A)}{\Delta t}$
OR incorporating velocity into Faraday's law $N A\left(\frac{\Delta B}{\Delta x}\right) v$
emf $=\left(200 \times 3.5 \times 10^{-5}(0.693) \times 0.80\right)$
$\mathrm{emf}=3.6$ to $4.2 \times 10^{-3}(\mathrm{~V}) \sqrt{ }$
The maximum emf (in the range considered) is the greatest at $x=0.10 \mathrm{~m}$ (as the gradient is the greatest)
So No $\sqrt{ } 4$ owtte
\checkmark_{1} This can be calculated at any x
eg at $x=0.10 \mathrm{~m}$ gives $\frac{\Delta B}{\Delta x}=\left(\frac{0.095}{0.137}\right)=0.69(3)\left(T^{-1}\right)$
\checkmark_{2} The mark is given for an attempt to use Faraday's law. Allow errors provided the form of the equation remains correct.
$\checkmark{ }_{3}$ The expected value is $3.8(8) \times 10^{-3} V$ \{range to be decided at standardisation\}
\checkmark_{4} No and an indication that the emf at $x=0.10 \mathrm{~m}$ is the maximum available. This could come earlier in the answer and can be inferred by a reference to the maximum gradient in the range considered. No ecf.
If no marks are awarded allow 1 mark if candidate states that the largest emf is expected at $x=0.10 \mathrm{~m}$
If only the second mark is awarded allow a mark for finding
$\frac{\Delta B}{\Delta t}$ or $N \frac{\Delta \emptyset}{\Delta t}$ between $x=0.07$ and 0.10 m (e.g. $\left.\frac{200 \times 3.5 \times 10^{-5}(0.07-0.024)}{0.0375}\right)$
3. (a) $N=\frac{\Phi}{A B}$ Or $N=\frac{1.5 \times 10^{-3}}{2.5 \times 10^{-2} \times 5.0 \times 10^{-4}}$
$\mathrm{N}=120$ (turns) \boldsymbol{V}_{2}
$\checkmark_{1} N$ must be the subject of the equation for the mark.
$\checkmark{ }_{2} A$ correct answer gains both marks.
If no mark is awarded a single mark can be given for $\Phi=B A N$ cos 30° being used to find
$N=139$.
(b) $\Phi\left(=\mathrm{NAB} \cos \theta=1.5 \times 10^{-3} \cos 30^{\circ}\right)$

Flux linkage $=1.3 \times 10^{-3}($ Wb turns $) \checkmark$
(c) $\quad f=\frac{1}{T}=\frac{1}{0.25}=4.0(\mathrm{~Hz})$ or $\omega=25.1$ or $8 \pi\left(\mathrm{rad} \mathrm{s}^{-1}\right) \checkmark_{1}$

Peak emf $\left(=B A N \frac{2 \pi}{T}=1.5 \times 10^{-3} \times \frac{2 \pi}{0.25}\right)$
\checkmark_{1} Condone using 1 sig fig for f but not ω or T.
The mark can be gained from seeing for ω or T given explicitly or from a substitution in the peak emf equation in the second mark.
\checkmark_{2} A correct answer gains both marks.
(d)

Either solid or dashed line gains mark \checkmark
The mark is dependent on the exact crossing of the time axis which has a tolerance of ± 1 small square.
The vertical axis figures is not expected.
Also ignore errors in height and the exact positions of the peaks.
Only a rough sinusoidal shape is expected. A triangular shape with very slightly rounded edges would be acceptable.
4. (a) Vertically up (third row of table) \checkmark
(b) (Using Flemings LHR) the configuration of the letters is $S N \checkmark$ Answer must be near / on the dashed lines.
(c) The tesla is the (strength) of the magnetic field / flux density that produces a force of 1 newton in a wire of length 1 m with 1 ampere (flowing perpendicular to the field). \checkmark (owtte but must contain 1N, 1A and 1 m)

For mark a reference to $1 \mathrm{~N}, 1 \mathrm{~A}$ and 1 m must be seen. However the word 'unit' is equivalent to ' 1 '.
E.g. unit force $=1 \mathrm{~N}$.

Do not allow definitions based on $F=B q v$.
(d) Use of $(B=F / I \Lambda)=m g / I / \checkmark$ (mark may come from substitution as in next line)

Treat power of 10 error as an AE so lose one mark only.
$B=0.620 \times 10^{-3} \times 9.81 /(3.43 \times 0.0500)=0.035$ or $0.036(T) \checkmark$
Lack of use of ' g ' is a PE and scores zero.
5. (a) period determined from at least 4 cycles, in range 3.8(0) to 5.0(0) $\times 10^{-4} \mathrm{~s} \checkmark$
frequency $=\frac{1}{\text { period }}$ in range $2300 \pm 300 \mathrm{~Hz} \checkmark$
accept 2 sf period, $2.3 \times 10^{3} \mathrm{~Hz}$
(b) peak to peak voltage $=6.8$ divisions seen \checkmark
rms voltage $=24 \mathrm{mV} \checkmark$
accept 24.0 or 24.1 mV
(c) flux linked with the search coil depends on the area of coil presented ${ }_{1} \checkmark$ area is proportional to $d \cos \theta_{2} \sqrt{ }$
[flux linked with the search coil depends on component of B perpendicular to the plane of the coil $_{1} \checkmark$
component is prop $B \cos \theta$, or suitable sketch] $]_{2} \checkmark$
for ${ }_{1} \checkmark$ accept $N \varphi=B A$
for ${ }_{2} \sqrt{ }$ accept evidence in sketch, e.g.

(d) six correctly calculated values of $\cos \theta$; accept all to 3 sf or all to $4 \operatorname{sf}_{1} \checkmark$
axes labelled, correct separator and unit with l, suitable scales ${ }_{2} \checkmark$
plots correct to half a square (check at least one) ${ }_{3} \checkmark$
ruled straight line extrapolated to meet either or both axes ${ }_{4} \sqrt{ }$
[for false plot allow ${ }_{2} \sqrt{ }$ and ${ }_{4} \sqrt{ }=2$ MAX]

θl°	l / cm	$\cos \theta$
10	6.7	0.985
34	5.6	0.829
50	4.4	0.643
60	3.4	0.500
72	2.1	0.309
81	1.1	0.156

(e) direct proportionality is confirmed since graph is a straight line with zero [negligible] intercept \checkmark
[allow ecf for false plot]
must refer to intercept
(f) idea of repositioning trace ${ }_{1} \checkmark$
(to reposition the trace) so that an end of the line is aligned with [close to] a (horizontal) graduation ${ }_{2} \checkmark$
(to reposition the trace) so that the line is aligned with the central (vertical) graduation on the screen ${ }_{3} \checkmark$
associates y-shift and x-shift correctly with trace change ${ }_{4} \sqrt{ }$ accept clear marks on Fig 7 for all except $4^{\text {th }}$ point allow alignment with graduation (can be major or minor) of either end of the line for ${ }_{2} \sqrt{ }$
(g) adjust y-voltage gain to a less sensitive [precise] setting $\left[20 \mathrm{mV} \mathrm{cm}{ }^{-1}\right] \checkmark$
since / is increased beyond the range of the screen [vertical length of trace is too great] \checkmark because induced emf is proportional to rate of change of flux linkage [or quotes Faraday's Law] \checkmark
and rate of change of flux linkage is doubled [same flux change in half the time] \checkmark accept 'reduce Y gain' but reject 'use lower Y gain setting' no credit for suggestions that time-base setting should be changed answer without quantitative detail 2 MAX

3 MAX
(h) evidence of suitable test employed to test whether curve shows exponential decrease, e.g. valid measurement of half life over more than one region ${ }_{1} \checkmark$
states that trend is not exponential ${ }_{2} \sqrt{ }$
cannot earn ${ }_{2} \sqrt{ }$ without valid ${ }_{1} \sqrt{ }$

