

A-Level Physics

Magnetic Fields

Mark Scheme

Time available: 74 minutes Marks available: 50 marks

www.accesstuition.com

Mark schemes

1.

(a) Core – links the magnetic flux/field from the primary coil to the secondary coil \checkmark_1 owtte

Secondary coil – (a conductor) has a <u>varying</u> magnetic flux/field passing through/linking with it \checkmark_2 owtte

to induce an emf determined by the number of turns in the primary and secondary coils \checkmark_3 owtte

 \checkmark_1 The word 'links' can be replaced with channels/directs /concentrates/focuses.

 \checkmark_2 'varying' is important for this mark.

 \checkmark_3 induction and reference to turns ratio both must be mentioned.

(b) The sheets of material **M** are made from insulator/high resistivity material which prevents/limits eddy currents from flowing in the core. \checkmark_1

(soft) iron is used because it efficiently links the magnetic field or it magnetises and demagnetises easily \checkmark_2

thin sheets of iron are used so smaller emfs are induced in the core (which increases the efficiency) \checkmark_3

thin sheets of iron are used so resistance is high causing lower currents (which increases the efficiency) \checkmark_4

 \checkmark_2 A reference to the benefit of using iron must be made (repeating the function of the core is not enough)

Any 3 points gain the marks; however, if \checkmark_3 and \checkmark_4 are both used one must refer to the resulting increase in efficiency

(c) If the voltage is lower/33 kV then power is transmitted at <u>high</u> <u>current</u>. So <u>energy is wasted/lost</u> in the cable by *I*²*r* heating. *✓*₁ owtte

If the voltage is made too high this will create major insulation/isolation difficulties. \checkmark_2 owtte

 \checkmark_2 higher pylons, transformers that have better insulation against spark over, more costly equipment

(d) Use of efficiency $\eta = \frac{power_{out}}{power_{in}}$ once \checkmark^1

Use of I = P/V once at any point \checkmark_2

I = 3200 (A) (correct answer only, no ecf) \checkmark_3

✓ 1 examples could be: power at 132 kV = 72 / 0.98 = 73.5 MW Or at transmission line start = 73.5 / 0.94 = 78.2 MW Or at 25 kV = 78.2 / 0.98 = 79.8 MW Or in single stage Power at 25 kV = 72 / (0.94 × 0.98²) = 79.8 MW) ✓₂ expect I = 79.8 × 10⁶ / 25 × 10³ = 3200 A

[11]

3

(a) Magnetic flux density at 0.070 m = 0.07 \pm 0.005 T \checkmark

(use of flux linkage $N\Phi = BAN$ = 0.07 × 3.5 × 10⁻⁵ × 200)

2.

Flux linkage = $4.9 \pm 0.2 \times 10^{-4}$ (Wb-turns) \checkmark shown calculated to at least 2 sig figs

2

(b) (As the coil moves) there is a rate of change of flux through the coil \checkmark_1 (owtte)

The induced emf is proportional to the rate of change of flux (linkage) so the (magnitude) of the emf decreases \checkmark_2 (owtte)

✓₁ The first part ie the induced emf is proportional to the rate of change of flux linkage may be given in a number of ways eg emf = $N \frac{\Delta \Phi}{\Delta t}$ or $N \frac{\Delta (BA)}{\Delta t}$ or simply saying 'because of Faraday's law'. Ignore the sign of the emf ✓₂ It's not enough to say the emf decreases Connection between rate of change of flux and change of flux with distance must be made

(c) Finding a gradient from a tangent \checkmark_1

Attempting to use Faraday's law

$$emf = N \frac{\Delta(BA)}{\Delta t}$$

OR incorporating velocity into Faraday's law $NA\left(\frac{\Delta B}{\Delta r}\right)v$

emf = $(200 \times 3.5 \times 10^{-5}(0.693) \times 0.80)$ emf = 3.6 to 4.2 × 10⁻³ (V) \checkmark_3

The maximum emf (in the range considered) is the greatest at x = 0.10 m (as the gradient is the greatest)

So No \checkmark_4 owtte

 \checkmark_1 This can be calculated at any x

eg at
$$x = 0.10 \text{ m gives} \frac{\Delta B}{\Delta x} = \left(\frac{0.095}{0.137}\right) = 0.69(3) \text{ (T m}^{-1})$$

 \checkmark_2 The mark is given for an attempt to use Faraday's law. Allow errors provided the form of the equation remains correct.

 \checkmark_3 The expected value is 3.8(8) × 10⁻³ V {range to be decided at standardisation}

 \checkmark_4 No and an indication that the emf at x = 0.10 m is the maximum available. This could come earlier in the answer and can be inferred by a reference to the maximum gradient in the range considered. No ecf.

If no marks are awarded allow 1 mark if candidate states that the largest emf is expected at x = 0.10 m

If only the second mark is awarded allow a mark for finding $\frac{\Delta B}{\Delta t}$ or $N \frac{\Delta \phi}{\Delta t}$ between x = 0.07 and 0.10 m (e.g. $\frac{200 \times 3.5 \times 10^{-5}(0.07 - 0.024)}{0.0375}$)

(a)
$$N = \frac{\Phi}{AB}$$
 Or $N = \frac{1.5 \times 10^{-3}}{2.5 \times 10^{-2} \times 5.0 \times 10^{-4}}$

N = 120 (turns) \checkmark_2

3.

 \checkmark_1 N must be the subject of the equation for the mark.

 \checkmark_2 A correct answer gains both marks. If no mark is awarded a single mark can be given for Φ = BAN cos 30° being used to find N = 139.

(b) Φ (= NAB cos θ = 1.5 × 10⁻³ cos 30°)

Flux linkage = 1.3×10^{-3} (Wb turns) \checkmark

4

2

1

[8]

(c) $f = \frac{1}{\tau} = \frac{1}{0.25} = 4.0$ (Hz) or $\omega = 25.1$ or 8π (rad s⁻¹) \checkmark_1

Peak emf (= $BAN \frac{2\pi}{r} = 1.5 \times 10^{-3} \times \frac{2\pi}{0.25}$)

 \checkmark_1 Condone using 1 sig fig for f but not ω or T.

The mark can be gained from seeing f or ω or T given explicitly or from a substitution in the peak emf equation in the second mark.

 \checkmark_2 A correct answer gains both marks.

Either solid or dashed line gains mark \checkmark

The mark is dependent on the exact crossing of the time axis which has a tolerance of ± 1 small square.

The vertical axis figures is not expected.

Also ignore errors in height and the exact positions of the peaks.

Only a rough sinusoidal shape is expected. A triangular shape with very slightly rounded edges would be acceptable.

				[6]
4.	(a)	Vertically up (third row of table) \checkmark	1	
	(b)	(Using Flemings LHR) the configuration of the letters is S $N \checkmark$ Answer must be near / on the dashed lines.	1	
	(c)	The tesla is the (strength) of the magnetic field / flux density that produces a force of 1 newton in a wire of length 1m with 1 ampere (flowing perpendicular to the field). \checkmark (owtte but must contain 1N, 1A and 1m)		
		For mark a reference to 1N, 1A and 1m must be seen. However the word 'unit' is equivalent to '1'.		
		E.g. unit force = $1N$.		
		Do not allow definitions based on $F = Bqv$.		
			1	

2

(d) Use of $(B = F/II) = mg/II\sqrt{(mark may come from substitution as in next line)}$

Treat power of 10 error as an AE so lose one mark only.

B = 0.620 ×
$$10^{-3}$$
 × 9.81 / (3.43 × 0.0500) = 0.035 or 0.036 (T) ✓
Lack of use of 'g' is a PE and scores zero.

2

2

2

[5]

(a) period determined from at least 4 cycles, in range 3.8(0) to 5.0(0) \times 10⁻⁴ s \checkmark

frequency = $\frac{1}{\text{period}}$ in range 2300 ± 300 Hz \checkmark accept 2 sf period, 2.3 × 10³ Hz

(b) peak to peak voltage = 6.8 divisions seen \checkmark

5.

rms voltage = 24 mV \checkmark accept 24.0 or 24.1 mV

(c) flux linked with the search coil depends on the <u>area</u> of coil presented ${}_1\checkmark$ area is proportional to $d\cos\theta_2\checkmark$

[flux linked with the search coil depends on component of B perpendicular to the plane of the coil_1 \checkmark

component is prop $B\cos\theta$, or suitable sketch]₂ \checkmark

for $_{1}\checkmark$ accept $N\varphi = BA$ for $_{2}\checkmark$ accept evidence in sketch, e.g.

$$d = \frac{1}{d \cos \theta}$$

(d) six correctly calculated values of $\cos\theta$; accept all to 3 sf or all to 4 sf $_1\checkmark$ axes labelled, correct separator and unit with l, suitable scales $_2\checkmark$ plots correct to half a square (check at least one) $_3\checkmark$ ruled straight line extrapolated to meet either or both axes $_4\checkmark$ [for false plot allow $_2\checkmark$ and $_4\checkmark = 2$ MAX]

$\cos\! heta$	<i>l</i> /cm	$ heta l^{\circ}$
0.985	6.7	10
0.829	5.6	34
0.643	4.4	50
0.500	3.4	60
0.309	2.1	72
0.156	1.1	81

(e) direct proportionality is confirmed since graph is a straight line with zero [negligible] intercept√

[allow ecf for false plot] must refer to intercept

(f) idea of repositioning trace $\sqrt{1}$

(to reposition the trace) so that an end of the line is aligned with [close to] a (horizontal) graduation $_2 \checkmark$

(to reposition the trace) so that the line is aligned with the <u>central</u> (vertical) graduation on the screen $_{3}\checkmark$

associates *y*-shift and *x*-shift correctly with trace change $_4\checkmark$

accept clear marks on Fig 7 for all except 4^{th} point allow alignment with graduation (can be major or minor) of either end of the line for₂ \checkmark

4

4

adjust y-voltage gain to a less sensitive [precise] setting [20 mV cm⁻¹] \checkmark (g)

since / is increased beyond the range of the screen [vertical length of trace is too great] \checkmark

because induced emf is proportional to rate of change of flux linkage [or quotes Faraday's Law] √

and rate of change of flux linkage is doubled [same flux change in half the time] \checkmark accept 'reduce Y gain' but reject 'use lower Y gain setting' no credit for suggestions that time-base setting should be changed answer without quantitative detail 2 MAX

3 MAX

(h) evidence of suitable test employed to test whether curve shows exponential decrease, e.g. valid measurement of half life over more than one region $\sqrt{1}$

states that trend is not exponential $_{2}\checkmark$ cannot earn $_{2}\checkmark$ without valid $_{1}\checkmark$