

A-Level Physics

Molecular Kinetic Theory

Question Paper

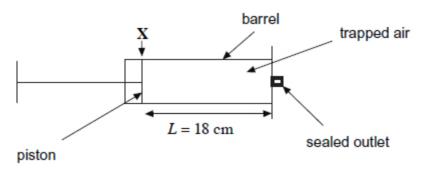
Time available: 64 minutes Marks available: 60 marks

www.accesstuition.com

- - es mains
_
_
-
_
and
re is 1 [°] he ball
for the

1.

www.accesstuition.com


(6)

(Total 11 marks)

2.

Figure 1 shows the cross-section of a bicycle pump with a cylindrical barrel. The piston has been pulled to the position marked **X** and the outlet of the pump sealed.

The length L of the column of trapped air is 18 cm and the volume of the gas is $1.7 \times 10^{-4} \text{m}^3$ when the piston is at position **X**. Under these conditions the trapped air is at a pressure p of 1.01×10^5 Pa and its temperature is 19°C.

Assume the trapped air consists of identical molecules and behaves like an ideal gas in this question.

(a) (i) Calculate the internal diameter of the barrel.

diameter _____ m

(2)

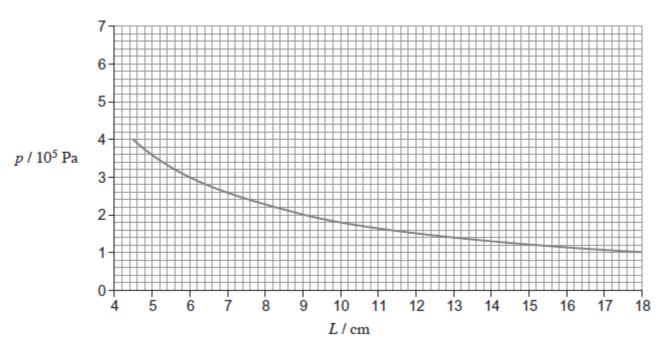
(ii) Show that the number of air molecules in the column of trapped air is approximately 4×10^{21} .

(3)

(iii) The ratio $\frac{\text{total volume of the air molecules}}{\text{volume occupied by the column of trapped air}}$ equals 7.0 × 10⁻⁴.

Calculate the volume of one air molecule.

volume _____ m³


(2)

	(iv)	The ratio in part (a)(iii) is important in supporting assumptions made in the kinetic theory of ideal gases.
		Explain how the value of the ratio supports two of the assumptions made in the kinetic theory of ideal gases.
(b)	The	mass of each air molecule is 4.7×10^{-26} kg.
	colu	culate the mean square speed of the molecules of trapped air when the length of the mn of trapped air is 18.0 cm. e an appropriate unit for your answer.
		mean square speed unit unit

(c) The piston is pushed slowly inwards until the length L of the column of trapped air is 4.5 cm.

Figure 2 shows how the pressure p of the trapped air varies as L is changed during this process.

Figure 2

(i) Use data from **Figure 2** to show that p is inversely proportional to L.

(ii) Name the physical property of the gas which must remain constant for p to be inversely proportional to L.

(1)

(3)

 	 	<u></u> .
		
 	 	
 	 	 -
 	 	

		iour of a gas.
		es one experiment that can be performed using a gas which would enable you to
		n absolute zero and determine its value.
	It is no	ot necessary to give full details of the apparatus. Your answer should:
		nclude the quantities that are kept constant
		dentify the measurements to be taken
		explain how the results may be used to find absolute zero ustify why the value obtained is absolute zero.
	,	ustily with the value obtained is absolute zero.
	The qu	uality of your written communication will be assessed in your answer.
b)	(i) S	State two assumptions about the movement of molecules that are used when
		. 1
	(deriving the equation of state, $pV = \frac{1}{3} N m (c_{\rm rms})^2$ for an ideal gas.
		1
		1
		1
	-	

www.accesstuition.com

(2)

(ii) Three molecules move at the speeds shown in the table below.

molecule	speed / m s ⁻¹
1	2000
2	3000
3	7000

Calculate their mean square speed.

mean square speed _	$_{\rm m}$ m 2 s $^{-2}$	
	(*	1)

(c) The average molecular kinetic energy of an ideal gas is 6.6×10^{-21} J. Calculate the temperature of the gas.

temperature _____ K

(2)

(Total 11 marks)

(a)		e pressure inside a bicycle tyre of volume $1.90 \times 10^{-3} \mathrm{m}^3$ is 3.20×10^5 Pa when the aperature is 285 K.	
	(i)	Calculate the number of moles of air in the tyre.	
		answer = mol	(1
	(ii)	After the bicycle has been ridden the temperature of the air in the tyre is 295 K. Calculate the new pressure in the tyre assuming the volume is unchanged. Give your answer to an appropriate number of significant figures.	
		answer = Pa	(3
(b)	simi	scribe one way in which the motion of the molecules of air inside the bicycle tyre is ilar and one way in which it is different at the two temperatures. ilar	
	diffe	erent	
		(Total	(2 6 marks

(i)	Show that the volume of the cylinder is $7.2 \times 10^{-2} \mathrm{m}^3$.	
(ii)	Calculate the average kinetic energy of a gas molecule in the cylinder.	
to 42	antity of gas is removed from the cylinder and the pressure of the remaining gas 20 kPa. If the temperature of the gas is unchanged, calculate the amount, in mol,	
rema	aining in the cylinder.	
	aining in the cylinder.	
	aining in the cylinder.	
Expla	aining in the cylinder. ain in terms of the kinetic theory why the pressure of the gas in the cylinder falls verse of the cylinder.	when
Expla	ain in terms of the kinetic theory why the pressure of the gas in the cylinder falls v	when
Expla	ain in terms of the kinetic theory why the pressure of the gas in the cylinder falls v	when

A cylinder of fixed volume contains 15 mol of an ideal gas at a pressure of 500 kPa and a

(a)

5.