

Moments

Mark Scheme

Time available: 71 minutes Marks available: 50 marks

1. (a) States tension in $\mathbf{P}+$ tension in $\mathbf{Q}=750+1800$

OR

tension in $\mathbf{Q}=1400 \mathrm{~N}$
OR
Distance from $\mathbf{Q}=3.6-d \boldsymbol{J}$
Use of principle of moments \checkmark
$(d=) 2.4(\mathrm{~m}) \checkmark$

alternative

Finds component of tension in P due to worker's weight = 250 N/ Finds tension in \boldsymbol{P} (due to weight of worker) by dividing weight of platform by 2 and subtracts from 1150 N

OR

Finds component of tension in \mathbf{Q} due to worker's weight $=500 \mathrm{~N} /$ Finds tension in \mathbf{Q} (due to weight of worker) by dividing weight of platform by 2 and subtracts from $1400 N \checkmark$
Recognises the ratio of weight distribution to worker position relative to cables \mathbf{P} and \mathbf{Q}
$250 N: 500 N=3.6-d: d \checkmark$ (principle of moments)
($d=$) 2.4 (m) \checkmark
(b) Extension $=0.18 \mathrm{~m}$ or use of $\varepsilon=\frac{\Delta L}{L}$ or reads off d correctly for their extension \checkmark
$(d=) 1.8 \mathrm{~m} \checkmark$
(c) $\quad(\sigma=) 1.14 \times 10^{7}\left(\mathrm{~N} \mathrm{~m}^{-2}\right) \checkmark$ c.a.o
(d) Straight line with negative gradient \checkmark

Line passes through $(0,0.46) \checkmark$
Line passes through $(3.6,0.26) \checkmark$
2. (a) Volume $=$ area \times length $=4.16 \times 10^{-4} \mathrm{~m}^{3} \checkmark$

Mass correct $=\mathrm{W} / \mathrm{g}=3.6 \mathrm{~kg} \checkmark$
To give density 8.6×10^{3}
And therefore brass \checkmark
Alternative for MP2 and MP3
(for brass)
Mass of brass $=$ density \times volume $=3.58 \mathrm{~kg} \sqrt{ }$
Weight $=3.58 \times 9.81=35 \mathrm{~N}$
And therefore brass is correct. \checkmark
(b) Use of $T=2(35) \cos 55 \checkmark$
$=40 \mathrm{~N}$ V
Allow 1 max for any one error
(c) Weight/tension in rope still 35 N OR is constant \checkmark

Angle to horizontal decreases so cos(angle) increases \checkmark
(Therefore tension in cable must increase)
Allow reference to
T=2(35) cos (angle) for MP2
(d) Component at right angle to door $=$
$41 \cos (90-12)$
$=8.5 \mathrm{~N}$ V
Moment $=8.5 \times 0.95=8.1(\mathrm{~N} \mathrm{~m}) \checkmark$
Alternative:
Perpendicular distance $=0.95 \sin$ (12)
$=0.198 \mathrm{~m} \checkmark$
Moment $=41 \times 0.198=8.1 \checkmark$
(e) Increase weight of $\mathbf{A} \checkmark$

Increases tension and therefore moment $\sqrt{ }$
Position pulley R further from pillar \checkmark
Increases angle and therefore bigger perpendicular component and therefore moment. \checkmark

Any 2 pairs
Condone (without discussion of effect on angle)
Move D further from hinge \checkmark
Increases perpendicular distance and therefore moment \checkmark
[13]
3. (a) Closed triangle of forces drawn \checkmark

Appropriate scale \checkmark
$\theta=23$ to $27\left(^{\circ}\right) \checkmark$
$U=77$ to 81 (N) \checkmark
Accept scale where 10 N is represented by at least 1 cm .

Treat each marking point independently.
Do not accept answers for U and θ without a scale diagram.
Maximum of 3 marks for a free-body diagram where forces have been drawn to scale. (Check figure 8)
(b) $\quad V$ is vertical / Force at \mathbf{Y} is now vertical / V does not have a horizontal component / $V=S+31 / V$ is perpendicular to the pole / V is of greater magnitude than $U /$ Force at \mathbf{Y} has increased in magnitude $\sqrt{ }$
(Because) S and weight (or $m g$) are both vertical (in Fig 3) \checkmark
(Because) greater moment of weight (about \mathbf{Y}) in Fig $\mathbf{3}$ / smaller moment of weight (about \mathbf{Y}) in Fig 1 / (Because) S is larger in magnitude than D (to produce a greater moment (about \mathbf{Y} because they are equal distances from Y) $\sqrt{ }$
4. (a) $0.56(\mathrm{~N}) \checkmark$
(b) Definition of couple as two equal forces acting in opposite directions \checkmark Moment of a couple is independent of the point about which moments are taken \checkmark

Forces (are equal but) don't act in opposite directions, therefore it is not correct \checkmark Combined moment of the two forces depends on the point about which moments are taken, therefore not correct.

1
(c) Use of total upward force = total downward force

1 mark for any attempt to equate upward and downward forces. Response may be on diagram.
eg $0.87+0.62=1.12+W \checkmark$
0.32 (N) \checkmark

Attempt to use Principle of Moments \checkmark
0.14 (m) \checkmark

Allow MP4 if (their W) $\times($ their $d)=0.0448$
(d) Readings (on A and B) would be the same/1.44 (N) \checkmark
(Because) total downwards force/weight is same
OR
All (perpendicular) distances affected by the same factor
$(\cos \theta) \checkmark$
5. (a) The centre of mass of the beam and box is at the pivot \checkmark

Idea that moments balance / sum of the moments is zero at this position \checkmark

OR

The anticlockwise moment (of weight of the beam) = clockwise moment (of weight of the box) \checkmark

Links pivot position to a consideration of moments \checkmark
Accept one route or the other, do not accept points from both.
Allow max 1 for "the pivot is to the right of the centre (of mass) of the beam"
'pivot' on its own does not get the first mark
Award 2 for $1.25 \times$ weight of beam $=1.5 \times$ weight of empty box
Confusion of moments with eg work done/forces = max 1
(b) Clockwise moment $=610 \times 9.81 \times 1.5(=8976 \mathrm{~N} \mathrm{~m}) \checkmark$

Anticlockwise moment $=250 \times 4+T \sin 50 \times 4.0(\mathrm{~N} \mathrm{~m}) \checkmark$
Use of clockwise = anticlockwise $\sqrt{ }$
Use of $T \sin 50^{\circ}$ seen / relates vertical component to tension \checkmark
$T\left(=1994 / \sin 50^{\circ}\right)=2600(\mathrm{~N}) \checkmark$
Credit any evidence to work out a moment with one mark Condone cos 50 in MP2.
Allow ecf for clockwise moment
Allow ecf for anticlockwise moment
Use of $g=10 \mathrm{~N} \mathrm{~kg}^{-1}$ gives 2990 N Omission of $4.0 \mathrm{~m}(g=9.8)$ gives 10410 N . Use of $\cos 50(g=9.8)$ gives 3100 N
Allow max 4 for use of $g=10 \mathrm{Nkg}^{-1}$.
(c) $7.5=1 / 2 \mathrm{~g} t^{2} \checkmark$
($t=1.2 \mathrm{~s}$)
(calculate distance)
$s(=u t=18 \times 1.2)=22(\mathrm{~m}) \checkmark$
Allow ecf from incorrect t for MP2
(d) (Range will be greater:)
component of velocity upwards \checkmark
rock will spend longer in the air \checkmark
greater $t \checkmark$
therefore the range is greater \checkmark

OR

(Range will be smaller)
Counterweight will fall less far before projectile released \checkmark
Less energy transferred to rock \checkmark
Initial speed of rock less/horizontal velocity reduced \checkmark
therefore the range is smaller \checkmark

OR

(balanced arguments)
therefore the range is unchanged / answer is indeterminate \checkmark
Candidates can argue from both lists to reach a balanced view suggesting that there is no change.
Full credit can be obtained from 2 deductions from one list $\checkmark \checkmark+$ consistent conclusion \checkmark
1 deduction from each list $\checkmark \checkmark+$ consistent conclusion \checkmark
Do not allow an unsupported conclusion.
Conclusion must be consistent with correct statements.
Treat incorrect statements as neutral.
Do not reward arguments based on a longer time of flight.
MAX 3

