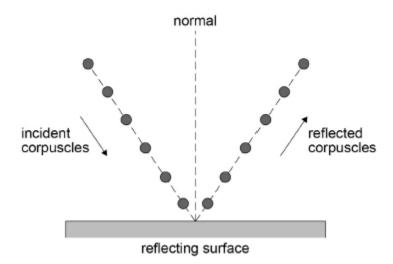


## A-Level Physics Newton's Corpuscular Theory of Light Question Paper


Time available: 52 minutes Marks available: 38 marks

www.accesstuition.com

1.

Newton used a corpuscular theory of light to explain reflection.

The diagram shows how corpuscles would reflect from a horizontal surface.



(a) What happens to the horizontal and vertical components of the velocity of the corpuscles, according to the theory, when they are reflected?

Tick (**√**) **one** box.

| Horizontal component of velocity | Vertical component of velocity | Tick the correct box |
|----------------------------------|--------------------------------|----------------------|
| Unchanged                        | Changed                        |                      |
| Changed                          | Unchanged                      |                      |
| Unchanged                        | Unchanged                      |                      |
| Changed                          | Changed                        |                      |

(1)

| Newton used the corpuscular theory to explain the refraction of light at an interface between air and water.                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Huygens used the wave theory to explain the refraction of light at the interface.                                                                                               |
| Discuss the evidence that led to the rejection of Newton's corpuscular theory.                                                                                                  |
| <ul> <li>In your answer you should include</li> <li>how each theory explains refraction</li> <li>how experimental evidence led to the acceptance of the wave theory.</li> </ul> |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |

(b)

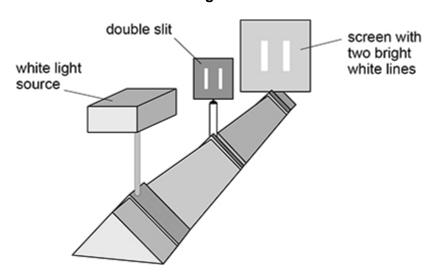
(6)

|    | (c) | Ligh | it is now known to behave as an electromagnetic wave.                                                                                                    |               |
|----|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|    |     |      | cribe a plane-polarised electromagnetic wave travelling through a vacuum. may wish to draw a labelled diagram.                                           |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          | (3)           |
|    |     |      |                                                                                                                                                          | tal 10 marks) |
| 2. | (a) | (i)  | Describe how Newton used the corpuscular theory to explain the refraction of li it passes from one substance into a substance of higher optical density. | ght as        |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          |               |
|    |     |      |                                                                                                                                                          | (3)           |
|    |     |      |                                                                                                                                                          |               |

| Huygens used a wave theory to explain refraction.                                                                                                       |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Explain why the corpuscular theory was rejected in favour of a wave theory to exrefraction.                                                             | xplain |
|                                                                                                                                                         |        |
|                                                                                                                                                         |        |
|                                                                                                                                                         |        |
|                                                                                                                                                         |        |
|                                                                                                                                                         |        |
| Describe and explain the difference in the appearance of the fringes in Young's                                                                         |        |
| double-slit experiment that are predicted by the corpuscular theory and by the w theory for light.                                                      | /ave   |
|                                                                                                                                                         |        |
|                                                                                                                                                         |        |
|                                                                                                                                                         |        |
|                                                                                                                                                         |        |
|                                                                                                                                                         |        |
|                                                                                                                                                         |        |
| tromagnetic waves and matter are now known to exhibit both particle and wave aviour. The photons for a particular X-ray wavelength have energy 5.0 keV. |        |
| ulate the potential difference through which an electron has to be accelerated so a Broglie wavelength is the same as that of this X-ray.               | that   |
|                                                                                                                                                         |        |
|                                                                                                                                                         |        |
|                                                                                                                                                         |        |
|                                                                                                                                                         |        |

(b)

(4)


(Total 11 marks)

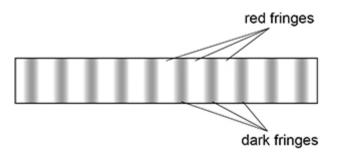
3.

In the 17th century, Isaac Newton proposed a theory to explain some of the properties of light. An alternative theory of light was proposed by Christiaan Huygens at about the same time.

A student uses the arrangement in **Figure 1** to investigate the two theories.

Figure 1




(a) The student observes two bright white lines on the screen.

| Explain how | explain how this observation supports Newton's theory of light. |  |  |  |  |             |  |
|-------------|-----------------------------------------------------------------|--|--|--|--|-------------|--|
|             |                                                                 |  |  |  |  |             |  |
|             |                                                                 |  |  |  |  |             |  |
|             |                                                                 |  |  |  |  | <del></del> |  |
|             |                                                                 |  |  |  |  |             |  |
|             |                                                                 |  |  |  |  | <del></del> |  |
|             |                                                                 |  |  |  |  |             |  |

(2)

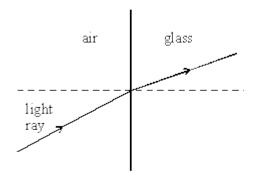
(b) The student makes alterations to the apparatus in Figure 1.Figure 2 shows the red and dark fringes that the student now observes on the screen.

Figure 2



Identify the alterations made by the student and explain how the observations in **Figure 2** support Huygens' theory of light.

In your answer you should:

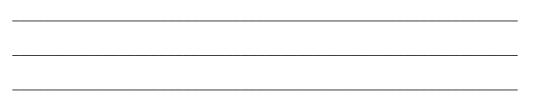

| • | identify alterations made to the apparatus in <b>Figure 1</b> outline the key features of Huygens' theory explain how the result of this experiment supports Huygens' theory. |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                                               |
|   |                                                                                                                                                                               |
|   |                                                                                                                                                                               |
|   |                                                                                                                                                                               |
|   |                                                                                                                                                                               |
|   |                                                                                                                                                                               |
|   |                                                                                                                                                                               |
|   |                                                                                                                                                                               |
|   |                                                                                                                                                                               |
|   |                                                                                                                                                                               |
|   |                                                                                                                                                                               |

(6)

| experiment into the behaviour of light. <b>Figure 3</b> shows Grimaldi's arrangement.                                                                                                       |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure 3                                                                                                                                                                                    |       |
| bright white light source                                                                                                                                                                   |       |
| A B                                                                                                                                                                                         |       |
|                                                                                                                                                                                             |       |
| screen                                                                                                                                                                                      |       |
| A bright white light source is used to illuminate a small circular aperture, <b>AB</b> .  The light from this aperture illuminates a second, slightly larger circular aperture, <b>CD</b> . |       |
| The light passing through both apertures arrives at a screen.                                                                                                                               |       |
| Newton's theory and Huygens' theory make different predictions about the appearance of the light on the screen.                                                                             |       |
| Discuss these differences in appearance.                                                                                                                                                    |       |
|                                                                                                                                                                                             |       |
|                                                                                                                                                                                             |       |
|                                                                                                                                                                                             |       |
|                                                                                                                                                                                             |       |
|                                                                                                                                                                                             |       |
|                                                                                                                                                                                             |       |
|                                                                                                                                                                                             |       |
|                                                                                                                                                                                             | (3    |
| (Total 11                                                                                                                                                                                   | marks |

(c) Shortly before the work of Newton and Huygens, Francesco Grimaldi carried out an

(a) The diagram below shows the path followed by a light ray travelling from air into glass.




boundary.

Use Newton's theory of light to explain the refraction of the light ray at the air/glass

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

- (3)
- (b) Newton's theory of light was eventually abandoned in favour of Huygens' wave theory which correctly predicted the speed of light in glass in comparison with the speed of light in air.
  - (i) What did each theory predict about the speed of light in glass in comparison with the speed of light in air?



|      | <br> | <br> |
|------|------|------|
|      |      |      |
|      | <br> |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |