

A-Level Physics

Newtons Laws of Motion

Mark Scheme

Time available: 65 minutes Marks available: 49 marks

Mark schemes

1. (a) Use of $p=m v$ or estimates walking speed $=1$ or $2 \mathrm{~m} / \mathrm{s} \checkmark$

Allow use of where m has been made the subject and p has been substituted.

Accept any answer in range 2×10^{6} to $10 \times 10^{6}(\mathrm{~kg}) \checkmark$
Range on answer:
(Using speeds in range $0.5 \mathrm{~ms}^{-1}$ to $2.5 \mathrm{~ms}^{-1}$)
Accept 1 significant figure answer
(b) Max 4

There is a force on the water (from the propeller) and this produces an equal force on the propeller (from the water in the opposite direction) \checkmark Correctly links to Newton's 3 rd law \checkmark

This force on the ship equals the drag force on the ship \checkmark Correctly links to Newton's 1st law \checkmark

Force is needed to change the water's momentum \checkmark Correctly links to Newton's $2^{\text {nd }}$ law $\sqrt{ }$

Must link correct law to at least one correct statement for all 4 marks
(c) (When system is enabled,) drag decreases by more than thrust

Or

(When system is enabled,) decrease in work done (per second) against drag (at any speed) is greater than the decrease in the work done by the propeller (at any rotational speed) $\sqrt{ }$

Work done (per second) by drag decreases and work done (per second) by propeller decreases (at any rotational speed)

To maintain constant momentum then drag must equal thrust \checkmark
Propeller can operate at lower rotational speed so that thrust again equals drag

Or

Engine does less work (and less fuel needs burnt) \checkmark
3rd MP: Accept answer in terms of power $=F v$
2. (a) Use of $E_{\mathrm{k}}=1 / 2 m v^{2} \checkmark$
(Kinetic energy =) $9.2 \times 10^{9}(\mathrm{~J}) \checkmark$
Condone POT error on $1^{\text {st }} \mathrm{MP}$
Allow use where v where has been converted from $5.5 \mathrm{~km} \mathrm{~h}^{-1}$
An answer to 2 significant figures (with some working) \checkmark
Significant figure mark requires evidence of some relevant working.
(b) Why force on the gas:

The gas's momentum is changing
This require a force according to Newton's $2{ }^{\text {nd }}$ law \checkmark
Or
The gas is being accelerated \checkmark
This require a force according to Newton's 2 nd law \checkmark

Max 3 for why there is a force on the gas and why there is a resistive force on the system

Must have why the system decelerates to obtain all 4 marks.
The reason why the resultant force causes the deceleration rather than the acceleration.

Why (resistive) force on system:

The gas exerts a force on the parachute (with an equal magnitude and opposite direction force) / there is air resistance (on the system) / there is drag (on the system) / there is a resistive force (on the system) \checkmark
(because) the Parachute exerts a force on the gas according to Newton's $3^{\text {rd }}$ law \checkmark
Allow statement that is equivalent to N1 / N2 / N3.
Allow: air resistance (or drag) increases.
Allow: there is an upward force must have a clear action-reaction pair for this N3 mark.

Why system decelerates:

The resistive force is greater than the weight so there is a resultant force Or
The resultant force is acting in the opposite direction (to its motion).
acceleration in same direction as resultant force according to Newton's $2{ }^{\text {nd }}$ law \checkmark allow the resultant force is vertically upwards
Or
Links to violation for conditions of Newton's $1{ }^{\text {st }}$ law and therefore cannot continue at constant velocity.
(c) Attempt at determining difference $=3.3\left(\times 10^{5}\right)-2.2\left(\times 10^{5}\right)$ or difference $=1.1$ $\left(\times 10^{5}\right) \checkmark$
$1^{\text {st }}$ mark: Credit an application of conservation of energy (allow written statement, or equation without substitution)
Ignore signs on difference and answer.
MP2 allow their energy in a substitution that is, otherwise correct.
Condone an answer $=18.4\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ is worth 2 marks.
Use of $E_{p}=m g h \checkmark$
$(\mathrm{g}=) 3.7\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \checkmark$
Condone $m g h=1 / 2 m v^{2}$ where rearranged to make g subject.
Condone $610 \times g \times 49=$ their energy
Alternative:

- Attempt to use appropriate equations of motion to determine acceleration
$v^{2}=u^{2}+2$ as rearranged to make a the subject (condone use of their values for v and u and $/$ or $g=a$)
- Attempt to use $W=F s$ to determine the air resistance F_{D} (or $F_{D}=6734(.7)(N)$ seen)
- Attempt to determine g from the deceleration of the system

$$
g=\frac{F_{D}-m a}{m}
$$

(d) More mass to displace / more particles to collide with / more gas / dust to displace \checkmark

Must have some interaction with parachute-spacecraft.
N/E to say there are more particles / gas / dust /mass
(at any given speed)
Greater (rate of) change of momentum / More work done (per unit distance) / Greater (resistive) force / more kinetic energy transferred (per unit distance) \checkmark

Greater resultant force on the system (therefore greater deceleration) / greater loss of velocity per second (therefore greater deceleration) \checkmark
$3^{\text {rd }}$ MP for greater resultant force: allow the idea that the difference
between the drag and weight has increased
$3^{\text {rd }}$ MP
Allow clear statement that links:

- rate of change of momentum of gas / dust to rate of change of momentum of system
- rate of work done on gas / dust to rate of work done by system

3. (a) Attempt to calculate weight of cage
eg $1.2 \times 10^{3} \times 9.81$ or 1.18×10^{4} seen \checkmark
Attempt to find vertical component of tension T_{V} in one rope
eg $3.7 \times 10^{4} \cos 20$ or 3.5×10^{4} seen \checkmark
Uses $F=$ twice their tension - their weight \checkmark
If weight not calculated, allow MP3 for doubling their tension or their resolved component
$5.8 \times 10^{4}(\mathrm{~N}) \checkmark$
(b) Use of $F=$ ma with $6 \times 10^{4} \mathrm{~N}$ or their (a) \checkmark $50\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \sqrt{ }$

Allow 48 ($\mathrm{m} \mathrm{s}^{-2}$).
(c) Calculation of length of rope eg 35/cos20 or 37.2 seen \checkmark

Allow methods using $F=k \Delta L$ and $E=1 / 2 k \Delta L^{2}$
Calculation of extension of one rope or calculation of total extension of both ropes eg their length-24 or 13.2 or 26.4 seen \checkmark

Use of $E=1 / 2 F \Delta L$
e.g. $1 / 2 \times 3.7 \times 10^{4} \times 13.2=2.44 \times 10^{5}(\mathrm{~J}) \checkmark$
$4.9 \times 10^{5}(\mathrm{~J}) \checkmark$
exine
(d) Use of E lost $=\Delta E_{\mathrm{p}}$ eg $1.2 \times 10^{3} \times 9.81 \times \mathrm{h}=5 \times 10^{5} \checkmark$

No credit for use of suvat in either method and MP3 must come from correct Physics.
First method is for calculation of max h and comparison with 50 m .
$h=42(\mathrm{~m}) \checkmark$
Allow h from their (c) if it rounds to 5×10^{5}
$42<50(\mathrm{~m})$, so claim not justified \checkmark
OR
Use of $\Delta E_{\mathrm{p}}=m g \Delta h$ with 50 m eg $1.2 \times 10^{3} \times 9.81 \times 50 \checkmark$

Second method is for calculation of ΔE_{p} and comparison with E.
$\Delta E_{\mathrm{p}}=5.9 \times 10^{5}(\mathrm{~J}) \checkmark$
$5.9 \times 10^{5}>5 \times 10^{5}$, so claim not justified \checkmark
(e) $90 \mathrm{~km} \mathrm{~h}^{-1}=25 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$

The conversion mark stands alone.

Use of $E_{\mathrm{k}}=1 / 2 m v^{2}$
eg $1 / 2 \times 1.2 \times 10^{3} \times(\text { their } v)^{2} \checkmark$
$3.8 \times 10^{5}(\mathrm{~J}) \checkmark$
ecf for their v
(f) If their $E_{\mathrm{k}}>5 \times 10^{5}$, claim is unjustified

OR
If their $E_{\mathrm{k}}<5 \times 10^{5}$, claim may be justified depending on gain in E_{p} or losses due to resistive forces \checkmark
4. (a) arrow parallel to slope labelled (M+2m)gsin35 and label parallel to slope labelled tension OR T \checkmark

Ignore arrows not parallel to ground e.g. weight Ignore friction
W not acceptable for $(M+2 m) g$
(b) $\mathrm{T}-\mathrm{Mg} \sin 35=\mathrm{Ma}$

AND ($\mathrm{M}+2 \mathrm{~m}$) $\mathrm{g} \sin 35-\mathrm{T}=(\mathrm{M}+2 \mathrm{~m}) \mathrm{a} \sqrt{ }$
add two equations
$(M+2 m) g \sin 35-M g \sin 35=M a+(M+2 m) a \checkmark$
HENCE
($\mathrm{a}=\mathrm{mgsin} 35 /(\mathrm{M}+\mathrm{m})$)
OR
$(M+2 m) g \sin 35-M g \sin 35 \checkmark(=(2 M+2 m) a)$
$a=2 m g \sin 35 /(2 M+2 m) \checkmark$
HENCE
($\mathrm{a}=\mathrm{mg} \sin 35 /(\mathrm{M}+\mathrm{m})$)
(c) SECOND MARK CONDITIONAL ON FIRST
mass / impulse / acceleration (of trollies) is the same \checkmark momenta (trolley A and B) the same

SECOND MARK CONDITIONAL ON FIRST
both have same speed / magnitude of velocity but different masses
\checkmark
(hence) momentum of A is greater / momenta in opposite directions \checkmark
(d) acceleration $=\frac{1}{4} \times \frac{30 \times 9.81 \times \sin 35^{\circ}}{(30+95)}=0.338 \checkmark$
(use of $v^{2}=2 a s$)
$v=\sqrt{ }(2 \times 0.338 \times 9.0)=2.47 \checkmark$
$t=\frac{2.47}{0.338}=7.3 \mathrm{~s} \checkmark$
OR
(use of $s=1 / 2 a t^{2}$)
$9=1 / 2 \times 0.338 \times t^{2} \checkmark$
$t=7.3 \mathrm{~s} \checkmark$
CE from acceleration calculation
If used g for acceleration then no marks awarded
(e) number of journeys $=(1800 /(12+7.3)=93$ or $94 \checkmark$ number of blocks $=2 \times 93=186$ or $2 \times 94=188 \checkmark$

Allow CE from 06.4
Allow between 93 to 94
Allow CE from incorrect number of journeys
Allow 186 to 188

