

A-Level Physics

Non-Ionising Imaging

Mark Scheme

Time available: 59 minutes Marks available: 43 marks

www.accesstuition.com

1.

The mark scheme gives some guidance as to what statements are expected to be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2) and 5 or 6 mark (L3) answer.

Guidance provided in section 3.10 of the 'Mark Scheme Instructions' document should be used to assist in marking this question.

Mark	Criteria			
6	Ultrasound identified and justified, quality comments on all 3, at least 2 other factors.			
5	Ultrasound identified and justified, quality comments on all 3, at least 1 other factor.			
4	Ultrasound or CT scanner identified. Quality comments on all 3 or 2 quality comments and 1 other factor.			
3	Ultrasound or CT scanner identified.			
	Quality comments on 2 and at least 1 other factor			
	Or			
	MR scanner identified and stated as highest resolution, with 2 quality comments and 2 others factors.			
2	Any choice, with a relevant supporting argument (allow MR scanner as highest resolution provided one other relevant factor is provided).			
1	Any valid comments (ignore MR scanner as highest resolution).			
0	No relevant comments.			

Points to consider:

Relevant quality

- MR scanner low quality image of calcium / kidney stones (allow cannot see)
- CT scanner high resolution image
- Ultrasound low resolution image

Other factors

- CT scanner is more expensive than ultrasound
- Ultrasound causes no harm
- CT scanner emits ionising radiation
- Ionising radiation damages cells

Justified choice

- Ultrasound
- Quality is good enough, cheaper and safe

2.

3.

(a) Align spins of protons \checkmark

Allow precession for spin Allow to increase the energy difference between the two spin modes.

1

(b) RF photons excite protons ✓

Flip the spin of protons \checkmark

(When pulse stopped) protons emit RF signals when they relax \checkmark MAX 2

2

[3]

(a) The mark scheme gives some guidance as to what statements are expected to be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2) and 5 or 6 mark (L3) answer.
Guidance provided in section 3.10 of the 'Mark Scheme Instructions' document should be used to assist in marking this question.

Mark	Criteria
6	All 3 areas covered in some detail. 6 marks can be awarded even if there is an error and/or parts of one aspect missing.
5	All 3 areas covered at least 2 in detail. Whilst there will be gaps, there should only be an occasional error.
4	Two areas successfully discussed, or one discussed and two others covered partially. Whilst there will be several gaps, there should only be an occasional error.
3	One area discussed and one discussed partially, or all three covered partially. There are likely to be several errors and omissions in the discussion.
2	Only one area discussed, or makes a partial attempt at two areas.
1	None of the three areas covered without significant error.
0	No relevant analysis.

Points to consider

How an ultrasound pulse is produced:

- alternating potential difference applied across the crystal
- causes crystal to expand and contract
- creating pressure waves in the crystal / plastic membrane
- frequency of alternating pd equal to that of crystal / resonant frequency of crystal
- which is above 20 kHz.

How the ultrasound reflection is detected:

- pressure wave in the crystal
- causes crystal to expand and contract
- which produces a potential difference across the crystal.

The same transducer acts as receiver as well as transmitter:

- short application of ac to produce short pulse
- use of backing material to damp and stop vibration of crystal
- crystal must stop vibrating before reflection reaches it.

(b)
$$\lambda = \frac{c}{f} = \frac{1600}{1.0 \times 10^6} = 0.0016$$

Resolution = 1.6 mm \checkmark Allow 1 sf answer of 2 mm

(c)
$$Z_1 = \rho c = 1.3 \times 330 (= 429)$$
 or

$$Z_2 = \rho c = 1075 \times 1580 (= 1.70 \times 10^6)$$
 \checkmark

$$\left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2 = \left(\frac{1.70 \times 10^6 - 4.29 \times 10^2}{1.70 \times 10^6 + 4.29 \times 10^2}\right)^2 \checkmark = 0.999 \checkmark$$

100 – 99.9 = 0.1% ✓ Allow ecf Allow 1 sf

(d) Not suitable as all/most/99.9% of the ultrasound would be reflected ✓
Allow correct argument based around transmission

when going from the air inside the lungs to the lung tissue \checkmark MP2 is for the direction where most is reflected.

(a) Coherent bundle – fixed arrangement of fibres at each end \checkmark

Used to transmit image (from inside the body to the viewer) \checkmark

Non-coherent bundle – random arrangement of fibres ✓

Used to transmit light into the body / to illuminate (area under investigation) ✓ Name of bundle plus either point for first mark. If no marks awarded, give 1 mark if both bundles have been named. 6

1

4

2

4

[13]

	(b)	Core at 1.6; cladding 1.55 ie half way between their core and 1.5 \checkmark			
		Series of clear horizontal steps with air at 1.0 \checkmark			
		Although they are told to do a calculation, give the mark on the diagram for 1.55 even if no calc shown.			
		If no marks awarded for drawing, then give 1 mark for correct calculation.			
				2	[6]
5.	(a)	(i) Coherent – used to transfer / transmit image (out of body)		_	
		Coherent – same fibre arrangements at both ends of bundle Allow same relative position		1	
		Do not allow symmetrical		1	
		(ii) Non-coherent – used to transfer light into body (to illuminate)			
		Non-coherent – random fibre arrangement along bundle		1	
		Do not allow not symmetrical		1	
	(b)	$\sin \theta_{c} = 1.49 / 1.52$			
		$\theta_c = 79 \text{ (degree)}$		1	
					[5]
6.	(a)	Idea that fibres in a coherent bundle maintain the same relative position to each other			
			B1		
		In incoherent bundles the fibres may be in different / random positions (at each end)			
			B1		
		Coherent bundle needs to be used for the observation image. Incoherent bundle may be used for the light transmission			
			B1	~	
				3	

			B1	
		acitor / photosite / photodiode charges / stores charge as light on it		
			B1	
	(Pho	otons arriving cause) electrons to be excited / emitted		
			B1	
	Cha	rge depends on light intensity		
			B1	
	Lots	of photosites / concept of pixels	54	
			B1	
	AN	5		Max 3
(c)	(i)	Core		
			MO	
		So that total internal reflection can occur		
			A1	1
	(ii)	79(.4)(°)		
			B1	1
	(iii)	Ray leaving one fibre and entering adjacent fibre		
			B1	
		Reduces resolution / image will be blurred / less clear / limits angle through which fibre may be bent		
			B1	2
				2 [10]