

 A-Level Physics

 A-Level Physics

 Operational Amplifier

 Operational Amplifier}

Mark Scheme

Time available: 52 minutes Marks available: 45 marks

Mark schemes

1. (a) difference amplifier \checkmark
(b) $\quad V_{\text {out }}=\left(V_{+}-V_{-}\right) \times\left(R_{f} / R_{\text {in }}\right)$

$$
\begin{aligned}
& \mathrm{V}_{\text {out }}=(0 \mathrm{~V}-150 \mathrm{mV}) \times(1 \mathrm{M} \Omega / 100 \mathrm{k} \Omega) \checkmark \\
& \mathrm{V}_{\text {out }}=-1.5 \mathrm{~V} \checkmark
\end{aligned}
$$

1 mark for the correct resistor substitution / resistor ratio (10)
1 mark for -1.5 V (must have correct sign)
(c) Signal 2 is subtracted from signal 1 by the difference amplifier \checkmark

Noise is common to both so will be reduced / eliminated when subtracted \checkmark
Signals will also be subtracted resulting in an addition (re-enforcement) of the signal. \checkmark

Accept arguments based on the 'phase' relationship

2.

(a)

(b) The non-inverting input (non-inverting)
(c) $\quad \mathrm{I}=\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{x}}\right) / \mathrm{R}_{\text {in }}=\left(\mathrm{V}_{\mathrm{x}}-\mathrm{V}_{\text {out }}\right) / \mathrm{R}_{\mathrm{f}}$

But $\mathrm{V}_{\mathrm{x}}=0 \mathrm{~V}$ (a virtual earth)
$I=V_{\text {in }} / R_{\text {in }}=-V_{\text {out }} / R_{f}$
Making use of: $I_{\text {in }}=-I_{F}$
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{R_{f}}{R_{\text {in }}}$
Making use of virtual earth concept
(d) Voltage gain (Channel 1) $=-R_{f} / R_{\text {in }} 1$
$-(150 \mathrm{k} \Omega / 7.5 \mathrm{k} \Omega)$
-20
Both number and sign must be correct
(e) $\quad \mathrm{V}_{\text {out }}=-\mathrm{R}_{\mathrm{f}}\left(\mathrm{V}_{\text {in Ch1 }} / \mathrm{R}_{1}+\mathrm{V}_{\text {in Ch2 }} / \mathrm{R}_{2}\right)$
$=-150 \mathrm{k} \Omega((15 \mathrm{mV} / 7.5 \mathrm{k} \Omega)+(-100 \mathrm{mV} / 30 \mathrm{k} \Omega))$
$=-((0.3)+(-0.5))=0.2$ Volts
Evidence of correct method
Answer and correct sign
(f) By using variable resistors

The gain can easily be changed
or
the relative levels of the two channels can be set
or
the required balance between the two signals can be made
One relevant point made
3. (a) Voltage in = Voltage out / Voltage gain
$=3 \mathrm{~V} / 40$
$=75 \times 10^{-3} \mathrm{~V}$,
(b)

Two resistor chain, correctly labelled connected between output and ground
Inverting input connected to mid-point of resistor chain
(c) $\frac{V_{\text {out }}}{V_{\text {in }}}=1+\frac{R_{f}}{R_{\text {in }}}$
$40=1+\frac{R_{f}}{R_{\text {in }}}$ calculation to give resistor ratio of $39 \checkmark$
$R_{\text {in }}=1 \mathrm{k} \Omega ; R_{\mathrm{f}}=39 \mathrm{k} \Omega \checkmark$
(d) Desired gain \times bandwidth is $40 \times 50 \mathrm{kHz}=2 \mathrm{MHz} \sqrt{ }$

The Op Amp can only provide $1 / 2$ the amplification needed. Not suitable. \checkmark
1 mark - relevant calculation
1 mark - reference to only providing $1 / 2$ require amplification / gain so not suitable
4. (a) Formula, \checkmark Substitution \checkmark
Gv=500 \checkmark
(b) Feedback resistor to output, \checkmark

Feedback resistor to - input, \checkmark
Resistor to + input, \checkmark
Resistor to OV \checkmark
(c) Formula, \checkmark
substitution, \checkmark
$1.1 \mathrm{M} \Omega \checkmark$
(d) (i) $2.2 \mathrm{k} \Omega \checkmark$
(ii) Voltage follower - Input to,$+ \checkmark$

- to output $\sqrt{ }$

5. (a) (i) A (at inverting input)
(ii) a point on the circuit where the voltage is $0 \mathrm{v} /$ ground but not connected to 0 v / is almost 0 v / simulates 0 v assuming that the op-amp has not saturated
(iii) $10 \mathrm{k} \Omega$ (must have units unless 10,000 which assumes standard) oe 10,000 / 10K etc
(b) correct formula rearranged calculation / substitution 470k Ω

3 for just correct answer with units
(c) inverted,
same frequency,
shape shows evidence of correct gain maximum amplitude $3 v$ to 5 v

