

Particles

Mark Scheme

Time available: 74 minutes Marks available: 52 marks

Mark schemes

1. (a) d quark changes to u quark \checkmark
(b) (Assume that energy released in decay is discrete) Distribution of (kinetic) energies of beta up to a max \checkmark
Suggests another particle must be released due to conservation of energy. \checkmark

Allow discussion in terms of conservation of momentum provided link to $K E$ is made (eg reference to $p^{2} / 2 m$)
2. (a) ${ }_{2}^{4} \alpha \checkmark+{ }_{90}^{234} \mathrm{Th} \checkmark$

Either 1 mark each for alpha and Th
If no other mark is given, one mark can be awarded for A correct and/or Z correct.

Condone He for alpha
Ignore symbol for Thorium
(b) Idea that a proton changes to neutron/beta minus decay \checkmark

This is a weak interaction/involves the weak force
So particle is W^{-}to conserve charge. \checkmark
Evidence can be found in the form of equations or diagrams.
Second mark requires some explanation of why particle is negative.
(c) FOR

Lines A and C could be mistaken for hydrogen
OR Line E could be mistaken for sodium \checkmark
AGAINST
Line D has no counterpart in other spectra \checkmark
Treat references to B and F in FOR or AGAINST as neutral.
(d) Wavelength $=5.8 \times 10^{-7} \mathrm{~m} \checkmark$

Use of $E=h c$ /wavelength
To give $3.46 \times 10^{-19} \mathrm{~J} \checkmark$
Conversion of their E in J to $\mathrm{eV}(=2.1 \mathrm{eV}) \checkmark$
Allow 5.8 to 5.9
Allow 1 mark for demonstrating idea of which equation to use if no other mark awarded
(e) Reference to $\Delta E=h f$ and several discrete energy transitions \checkmark

Emission - as atoms/electrons decrease energy by ΔE, light of frequency f produced \checkmark

Absorption - as atoms/electrons increase energy by ΔE, light of frequency f removed (from spectrum) \checkmark
3. (a) 2 rows correct \checkmark

3 rows correct $\checkmark \checkmark$

$\boldsymbol{\pi}^{+}$	\mathbf{p}	\sum^{+}	\mathbf{Y}	
B	0	1	1	
Q	+1	+1	+1	+1
S	0	0	-1	+1

(b) Tick 3rd box only - $\sum^{+} \checkmark$
(c) \mathbf{Y} has a greater rest energy than a pion / \mathbf{Y} has greater mass than a pion \checkmark
\mathbf{Y} is a kaon \checkmark
Pion has greater specific charge because it has the same charge as \mathbf{Y} but less mass than $\mathbf{Y} \checkmark$

Accept for mp2:
\boldsymbol{Y} contains an s quark which is more massive than u or d quarks in the pion / Pion is 1st generation while \boldsymbol{Y} is 2nd generation
Error carried forward for charge on \boldsymbol{Y} from (a) \boldsymbol{Y} will have a greater specific charge where \boldsymbol{Y} has charge greater than +4
4. (a) 126 V
(b) A neutron decays into a proton

Or

$$
n \rightarrow p+e^{(-)}+\overline{v_{e}} \checkmark
$$

Allow a neutron changes to a proton. (owtte) Accept the decay equation of a neutron / bismuth

- Statement that neutron converts to proton \checkmark
- all numbers correct and context
${ }_{83}^{210} B i \rightarrow{ }_{84}^{210} P o+{ }_{-1}^{0} e+\left({ }_{0}^{0} \bar{v}_{e}\right)$
Proton number increases by one when Bi-210 decays and describes beta minus

Condone missing (or incorrect) neutrino or symbol for bismuth
OR
$\mathrm{Bi}-210$ has one fewer proton (than Po-210) and describes beta minus in words
OR
Po-210 has one more proton (than Bi-210) and describes beta minus in words
Or
Proton number increases from 83 to 84 and describes beta minus in words \checkmark Allow proton number increases where there is a clear statement that a neutron has decayed into a proton.
(c) (Missing) energy carried off by third particle

Or
(A third particle must be produced) for conservation of energy \checkmark Accept energy is converted into mass of third particle. Where third particle is named must be a neutrino or an antineutrino.

There is missing energy (When) a beta (particle) has less than 1.2 MeV (of kinetic energy).

Or
The law of conservation of energy appears to be violated when beta (particle) has less than 1.2 MeV \checkmark

Identify there is difference between 1.2 MeV and E_{k}.
(d) (It must be an electron antineutrino to) conserve lepton number $\sqrt{ }$

An electron and (electron) antineutrino have lepton numbers of opposite signs.
Or
An electron and (electron) antineutrino have a (total) lepton number of zero. \checkmark
Alternative for $2^{\text {nd }}$ Marking point:
Appropriate particle equation seen annotated with correct lepton numbers.

Alternative:

Producing an (electron) neutrino wouldn't conserve lepton number \checkmark
An electron and (electron) neutrino have lepton numbers of the same sign.
Or
An electron and (electron) neutrino have a (total) lepton number equal to 2. \checkmark
Alternative $2^{\text {nd }}$ marking point:
Appropriate particle equation seen annotated with correct lepton numbers.
(e) $\quad(\mathbf{X}=) \mathrm{W}$-minus (boson) $/ \mathrm{W}^{-}$(boson) \checkmark
$(\mathbf{Y}=)$ neutron / $\mathrm{n} \checkmark$
(f) Lepton (in the water molecule) is an electron \checkmark

Must state that lepton (in the water) is an electron for all 3 marks
and
Max 2 from
annihilation \checkmark
gamma photons are produced \checkmark
Two (gamma) photons are produced (that travel) in opposite directions. Penalise answers that list other products in MP3 and MP4
(g) Max 3

The positron because:
positron is charged and the (electron) antineutrino $\left(\bar{v}_{(e)}\right)$ is neutral \checkmark
The antineutrino only interacts via the weak interaction / The positron interacts via the electromagnetic interaction (and weak interaction) \checkmark

The antineutrino's (weak) interaction is shorter range / the antineutrino is less likely to get close enough to interact (with particles in the water so will travel further) / the antineutrino will interact with fewer particles \checkmark

The positron's (electromagnetic) interaction has a longer range / the positron does not have to be so close to interact (with particles in the water so will travel a shorter distance) / the positron will interact with more particles \checkmark

Must have the correct conclusion for 3 marks.
5. (a) MP1 is for evidence of determining the charge on the nucleus. \checkmark

$$
\begin{aligned}
& \text { Charge }=4.39 \times 10^{7} \times 8.02 \times 10^{-26} \mathrm{~kg} \\
& \left(=3.52 \times 10^{-18} \mathrm{C}\right)
\end{aligned}
$$

MP2 is for evidence of determining either the number of protons OR the number of nucleons. \checkmark

Number of protons $=$ charge $/ 1.6 \times 10^{-19}(=22)$
OR
Number of nucleons

$$
=8.02 \times 10^{-26} / 1.67 \times 10^{-27}(=48)
$$

MP3 is for determining number of neutrons. \checkmark
Number of neutrons $=48-22=26$
Note use of 1.7 gives 27 neutrons and loses MP3
(b) Evidence of conversion of MeV to $\mathrm{J} \checkmark$

$$
\text { Energy }=2.15 \times 10^{8} \times 1.6 \times 10^{-19}\left(=3.44 \times 10^{-11} \mathrm{~J}\right)-\text { allow POT }
$$ error in MP1

Substitution into KE equation \checkmark

$$
v^{2}=2 E / m=8.58 \times 10^{14}
$$

Correct final answer \checkmark

$$
v=2.9(3) \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}
$$

(c) $\pi^{+} \rightarrow \mathrm{e}^{+}+v_{e}$

OR
charge: $1=1+0 \checkmark$
B: $0=0+0$
AND
$\mathrm{L}: 0=-1+1 \checkmark$
(S: $0=0+0$)
(d) $\left(\mathrm{K}^{+} \rightarrow \mu^{+}+\mathrm{v}_{\mu}\right)$

Correct strangeness
$+1=0+0 \checkmark$
Weak interaction so strangeness can change (by $0,+1$ or -1) \checkmark
(e) Decay consistent with Q B L conservation \checkmark

Equation involving pions \checkmark
e.g.

$$
\begin{aligned}
& K^{+} \rightarrow \pi^{+}+\pi^{+}+\pi^{-} \\
& K^{+} \rightarrow \pi^{+}+\pi^{0}
\end{aligned}
$$

