

A-Level Physics

Particles

Mark Scheme

Time available: 74 minutes Marks available: 52 marks

www.accesstuition.com

Mark schemes

(a) d quark changes to u quark √ 1. 1 (Assume that energy released in decay is discrete) Distribution of (b) (kinetic) energies of beta up to a max \checkmark Suggests another particle must be released due to conservation of energy. √ Allow discussion in terms of conservation of momentum provided link to KE is made (eg reference to $p^2/2m$) 2 neutron √ (c) 1 (d) Calculation of minimum energy produced in annihilation (from rest mass energy x2) $= 2 \times 0.51 \text{ MeV} = 1.6 \times 10^{-13} \text{ J} \checkmark$ 2 photons produced so energy per photon = $8.0 \times 10^{-14} \text{ J} \checkmark$ Only G3 has sufficient energy to have been made in annihilation. ✓ Allow 1 max if x2 ignored both times. 3 2.

(a) $\frac{4}{2}\alpha \checkmark + \frac{234}{90} \text{Th} \checkmark$

Either 1 mark each for alpha and Th If no other mark is given, one mark can be awarded for A correct and/or Z correct. Condone He for alpha Ignore symbol for Thorium

Idea that a proton changes to neutron/beta minus decay \checkmark (b)

This is a weak interaction/involves the weak force

So particle is W^- to conserve charge. \checkmark

Evidence can be found in the form of equations or diagrams. Second mark requires some explanation of why particle is negative.

2

2

[7]

FOR (C)

Lines A and C could be mistaken for hydrogen OR Line E could be mistaken for sodium ✓ AGAINST Line D has no counterpart in other spectra ✓ Treat references to B and F in FOR or AGAINST as neutral. 2 Wavelength = $5.8 \times 10^{-7} \text{ m} \checkmark$ (d) Use of E = hc/wavelength To give 3.46 × 10⁻¹⁹ J ✓ Conversion of their *E* in J to eV (= 2.1 eV) \checkmark Allow 5.8 to 5.9 Allow 1 mark for demonstrating idea of which equation to use if no other mark awarded 3 (e) Reference to $\Delta E = hf$ and several discrete energy transitions \checkmark Emission – as atoms/electrons decrease energy by ΔE , light of frequency f produced \checkmark Absorption – as atoms/electrons increase energy by ΔE , light of frequency *f* removed (from spectrum) \checkmark 3 (a)

3.

2 rows correct √

3 rows correct $\checkmark\checkmark$

π+	р	∑+	Y	
В	0	1	1	0
Q	+1	+1	+1	+1
S	0	0	-1	+1

2

1

[12]

(c) Y has a greater rest energy than a pion / Y has greater mass than a pion \checkmark

Y is a kaon √

Pion has greater specific charge because it has the same charge as Y but less mass than Y \checkmark

Accept for mp2:

Y contains an s quark which is more massive than u or d quarks in the pion / Pion is 1st generation while **Y** is 2nd generation Error carried forward for charge on **Y** from **(a) Y** will have a greater specific charge where **Y** has charge greater than +4

4.

(a)

1

[6]

3

(b) A neutron decays into a proton

Or

126 🗸

 $n \rightarrow p + e^{(-)} + \overline{v_e} \checkmark$

Allow a neutron changes to a proton. (owtte) Accept the decay equation of a neutron / bismuth

- Statement that neutron converts to proton \checkmark
- \bullet all numbers correct and context \checkmark

 ${}^{210}_{83}Bi \rightarrow {}^{210}_{84}Po + {}^{0}_{-1}e + ({}^{0}_{0}\overline{v_{e}})$

Proton number **increases by one** when Bi-210 decays and describes beta minus

Condone missing (or incorrect) neutrino or symbol for bismuth

OR

Bi-210 has one fewer proton (than Po-210) and describes beta minus in words

OR

Po-210 has one more proton (than Bi-210) and describes beta minus in words

Or

Proton number increases from 83 to 84 and describes beta minus in words <

Allow proton number increases where there is a clear statement that a neutron has decayed into a proton.

2

(c) (Missing) energy carried off by third particle

Or

(A third particle must be produced) for conservation of energy ✓

Accept energy is converted into mass of third particle.

Where third particle is named must be a neutrino or an antineutrino.

There is missing energy (When) a beta (particle) has less than 1.2 MeV (of kinetic energy).

Or

The law of conservation of energy appears to be violated when beta (particle) has less than 1.2 MeV \checkmark

Identify there is difference between 1.2 MeV and E_k .

2

(d) (It must be an electron antineutrino to) conserve lepton number \checkmark

An electron and (electron) antineutrino have lepton numbers of opposite signs.

Or

An electron and (electron) antineutrino have a (total) lepton number of zero. \checkmark

Alternative for 2nd Marking point: Appropriate particle equation seen annotated with correct lepton numbers.

Alternative:

Producing an (electron) neutrino wouldn't conserve lepton number 🗸

An electron and (electron) neutrino have lepton numbers of the same sign.

Or

An electron and (electron) neutrino have a (total) lepton number equal to 2. ✓
 Alternative 2nd marking point:
 Appropriate particle equation seen annotated with correct lepton

numbers.

2

2

 $(\mathbf{Y} =)$ neutron / n \checkmark

(f) Lepton (in the water molecule) is an electron \checkmark

Must state that lepton (in the water) is an electron for all 3 marks

and

Max 2 from

annihilation 🗸

gamma photons are produced v

<u>Two</u> (gamma) <u>photons</u> are produced (that travel) in opposite directions. ✓ Penalise answers that list other products in MP3 and MP4

(g) Max 3

5.

The positron because:

positron is charged and the (electron) antineutrino $(\bar{v}_{(e)})$ is neutral \checkmark

The antineutrino only interacts via the weak interaction / The positron interacts via the electromagnetic interaction (and weak interaction) \checkmark

The antineutrino's (weak) interaction is shorter range / the antineutrino is less likely to get close enough to interact (with particles in the water so will travel further) / the antineutrino will interact with fewer particles \checkmark

The positron's (electromagnetic) interaction has a longer range / the positron does not have to be so close to interact (with particles in the water so will travel a shorter distance) / the positron will interact with more particles \checkmark

Must have the correct conclusion for 3 marks.

3

3

(a) MP1 is for evidence of determining the charge on the nucleus. \checkmark

Charge = $4.39 \times 10^7 \times 8.02 \times 10^{-26}$ kg (= 3.52×10^{-18} C)

MP2 is for evidence of determining either the number of protons OR the number of nucleons. \checkmark

Number of protons = charge/1.6 × 10^{-19} (= 22) OR Number of nucleons = $8.02 \times 10^{-26} / 1.67 \times 10^{-27}$ (= 48)

MP3 is for determining number of neutrons. \checkmark Number of neutrons = 48 - 22 = 26Note use of 1.7 gives 27 neutrons and loses MP3 (b) Evidence of conversion of MeV to J \checkmark

Substitution into KE equation \checkmark

$$v^2 = 2E/m = 8.58 \times 10^{14}$$

Correct final answer \checkmark

$$v = 2.9(3) \times 10^7 \text{ m s}^{-1}$$

(c) $\pi^+ \rightarrow e^+ + v_e$ OR charge: 1 = 1 + 0 \checkmark

> B: 0 = 0 + 0AND L: $0 = -1 + 1\sqrt{}$ (S: 0 = 0 + 0)

$$(d) \quad (\mathsf{K}^+ \to \mu^+ + v_{\mu})$$

Correct strangeness

+1 = 0 + 0 ✓

Weak interaction so strangeness can change (by 0, +1 or −1) ✓

(e) Decay consistent with Q B L conservation√

Equation involving pions \checkmark

e.g.

$$K^+ \rightarrow \pi^+ + \pi^+ + \pi^-$$

 $K^+ \rightarrow \pi^+ + \pi^0$

3

2

2 [12]