

Particles and Radiation (Multiple Choice)

Question Paper

Time available: 20 minutes Marks available: 20 marks

1. Which row has the largest value for $\frac{\text { specific charge of the particle in column } X}{}$?
specific charge of the particle in column Y

	\mathbf{X}	\mathbf{Y}
A	electron	alpha particle
B	alpha particle	electron
C	electron	proton
D	proton	alpha particle

(Total 1 mark)
2. Which diagram represents the process of electron capture?

A $\quad 0$
B $\quad 0$
C O
D O

B

D

3. Which row is correct?

	Name of particle	Classification	Quark structure
A	antineutron	meson	$\bar{u} \bar{u} \bar{d}$
B	positive kaon	baryon	$\bar{u} s$
C	antiproton	baryon	$\bar{u} \bar{u} \bar{d}$
D	positive pion	meson	\begin{tabular}{\|c
\hline			
\end{tabular}			
	$\bar{u} d$	\square	

(Total 1 mark)
4. Which provides evidence for discrete atomic energy levels?

A β^{+}decay
B electron diffraction

C line spectra

D the photoelectric effect

\circ
\bigcirc
5. What is the specific charge of a ${ }_{6}^{13} \mathrm{C}$ nucleus?
A $\quad 4.4 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}$ \square
B $\quad 5.2 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}$ \square
C $\quad 8.3 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}$ \square
D $\quad 2.1 \times 10^{8} \mathrm{C} \mathrm{kg}^{-1}$ \bigcirc
6. A fluorescent tube contains a gas.

The coating of the tube

A becomes ionised by the gas and emits photons of ultraviolet light. \square

B absorbs photons of ultraviolet light from the gas and emits visible light.

C absorbs photons of ultraviolet light from the gas and emits photoelectrons.

D absorbs several photons of visible light from the gas and then emits one photon of ultraviolet light.
(Total 1 mark)
7. Which row gives evidence for the wave nature of electrons and evidence for the particulate

	Wave nature of electrons	Particulate nature of light	
A	electron diffraction	photoelectric effect	\bigcirc
B	electron diffraction	single-slit diffraction	\bigcirc
C	photoelectric effect	single-slit diffraction	\bigcirc
D	photoelectric effect	electron diffraction	\bigcirc

(Total 1 mark)
8. Which particle has the smallest de Broglie wavelength?

A an electron moving at $4 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
B a proton moving at $4 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$

C an electron moving at $8 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$

D a proton moving at $8 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$
9. An atom of oxygen-15 $\left({ }_{8}^{15} \mathrm{O}\right)$ gains two electrons to form an ion.

What is the specific charge of the ion?

A $-1.3 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}$
B $-2.4 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}$ \bigcirc 0

C $-5.1 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}$ \bigcirc

D $-6.4 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}$
10. A muon and an antimuon annihilate to produce the minimum number of photons. What is the maximum wavelength of the photons?

A $5.9 \times 10^{-15} \mathrm{~m}$ \bigcirc

B $1.2 \times 10^{-14} \mathrm{~m}$

C $5.9 \times 10^{-9} \mathrm{~m}$ \bigcirc

D $1.2 \times 10^{-8} \mathrm{~m}$

(Total 1 mark)

$$
n=2 \longrightarrow-2.9 \times 10^{-19} \mathrm{~J}
$$

$$
n=1 \longrightarrow-8.6 \times 10^{-19} \mathrm{~J}
$$

A free electron with kinetic energy $6.0 \times 10^{-19} \mathrm{~J}$ collides with a stationary lithium atom in its $n=1$ energy level. The lithium atom is excited to the $n=2$ energy level.

What is the kinetic energy of the free electron after the collision?

A $0.3 \times 10^{-19} \mathrm{~J}$

B $2.6 \times 10^{-19} \mathrm{~J}$

C $3.1 \times 10^{-19} \mathrm{~J}$

D $5.7 \times 10^{-19} \mathrm{~J}$
12. The graph shows how the maximum kinetic energy $E k_{(\max)}$ of photoelectrons emitted from a metal surface varies with the frequency f of the incident radiation. \mathbf{P} is the intercept on the f axis. \mathbf{Q} is the intercept on the $E k_{(\max)}$ axis.

Which graph shows the variation of $E k_{(\max)}$ with f for a metal with a greater work function?

A
C

D

A 0
B \bigcirc
C \bigcirc
D \bigcirc Which series of decays turns a uranium nucleus into a radon nucleus?

A $\alpha+\beta^{-}+\beta^{-}+\alpha+\alpha$

B $\beta^{-}+\beta^{-}+\alpha+\beta^{-}+\alpha$

C $\quad \alpha+\alpha+\alpha+\alpha+\beta^{-}$

D $\beta^{-}+\beta^{-}+\beta^{-}+\beta^{-}+\alpha$
\square
\bigcirc
\square
\square
(Total 1 mark)

A

> C

B

D

A

B

C

D

$$
0
$$

15. ${ }_{81}^{x} \mathrm{~T} 1$ decays to ${ }_{82}^{206} \mathrm{~Pb}$ by a series of four radioactive decays.

Each decay involves the emission of either a single α particle or a single β^{-}particle.
What is x ?

A 207

B 209 \square

C 210

D 212

(Total 1 mark)
16. What is the number of up quarks and down quarks in a ${ }_{4}^{9}$ Be nucleus?

	Number of up quarks	Number of down quarks
A	11	16
B	13	14
C	14	13
D	16	11

17. Which decay of a positive kaon $\left(\mathrm{K}^{+}\right)$particle is possible?

A $\quad \mathrm{K}^{+} \rightarrow \pi^{0}+\mathrm{e}^{+}+\bar{v}_{\mathrm{e}} \quad \bigcirc$
B $\quad \mathrm{K}^{+} \rightarrow \mathrm{p}+\mathrm{v}_{\mu}$ \square

C $\mathrm{K}^{+} \rightarrow \pi^{+}+\pi^{+}+\pi^{0}$

D $\mathrm{K}^{+} \rightarrow \mu^{+}+\mathrm{V}_{\mu}$
\bigcirc
18. A particle has a kinetic energy of E_{k} and a de Broglie wavelength of λ.

What is the de Broglie wavelength when the particle has a kinetic energy of $4 E_{\mathrm{k}}$?
A $\frac{\lambda}{2}$
0
B $\frac{\lambda}{\sqrt{2}}$

C $\sqrt{2} \lambda$

D 2λ

(Total 1 mark)
19. The radioactive nuclide ${ }_{90}^{232} \mathrm{Th}$ decays by one α emission followed by two β^{-}emissions. Which nuclide is formed as a result of these decays?
A $\quad{ }_{92}^{238} \mathrm{U}$

B $\quad{ }_{90} 230 \mathrm{Th}$

C $\quad{ }_{90}^{228} \mathrm{Th}$

D $\quad{ }_{88} 228 \mathrm{Rn}$

20. Unstable nuclide \mathbf{P} decays to nuclide \mathbf{T} through a series of alpha (α) and beta-minus $\left(\beta^{-}\right)$decays.

$$
\begin{array}{lllllllll}
& \alpha & & \beta^{-} & & \beta^{-} & & \alpha \\
\mathbf{P} & \mathbf{Q} & \rightarrow & \mathbf{R} & \rightarrow & \mathbf{S} & \rightarrow & \mathbf{T}
\end{array}
$$

Which statement is correct?

A \mathbf{P} and \mathbf{S} are isotopes.

B $\quad \mathbf{Q}$ and \mathbf{T} have different proton numbers.
\circ

C $\quad \mathbf{Q}$ and \mathbf{S} have different nucleon numbers.
0

D $\quad \mathbf{R}$ has a greater proton number than \mathbf{P}.

(Total 1 mark)

