

A-Level Physics

Physics of the Ear

Mark Scheme

Time available: 70 minutes Marks available: 37 marks

Mark schemes

1. (a) Calculation of area

$$
A\left(=4 \pi r^{2}\right)=4 \pi 12^{2}(=1810) \checkmark_{1}\left(\mathrm{~m}^{2}\right)
$$

Calculation of intensity

$$
\begin{aligned}
& I=\frac{P}{A}=\frac{17}{1810}\left(=9.49 \times 10^{-3}\right) \checkmark_{2}\left(\mathrm{~W} \mathrm{~m}^{-2}\right) \\
& \quad \text { ecf for } \checkmark_{2} \text { if area calculation attempted }
\end{aligned}
$$

Calculation of intensity level

$$
\begin{aligned}
& I=10 \log \frac{9.49 \times 10^{-3}}{10^{-12}}=100 \checkmark_{3} \\
& \\
& \quad \text { ecf for } \checkmark_{3} \text { even if no area calculation attempted }
\end{aligned}
$$

(b) The sound would be quieter \checkmark
ear is most sensitive at $3 \mathrm{kHz} \checkmark$
2. (a) $I \propto \frac{1}{A}=\frac{1}{r^{2}}$ or
$P=I A=3.4 \times 10^{-8} \times 4 \pi 11^{2} \checkmark\left(=5.17 \times 10^{-5} \mathrm{~W}\right)$
Either $\left(I=\frac{3.4 \times 10^{-8} \times 11^{2}}{7^{2}}\right.$ or $\left.I=\frac{P}{A}=\frac{5.17 \times 10^{-5}}{4 \pi 7^{2}}\right)$
$=8.4 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \checkmark$
M1 Working mark
Evidence of either a proportion calculation or calculation of power from intensity
Use of $I \propto \frac{1}{r^{2}}$ with the wrong factor for r still scores M1 (but not M2) M1 cannot be awarded if πr^{2} is used for the area but M2 can still be awarded.
(b) One from

$$
\begin{aligned}
& I_{1}=I_{0} 10^{\frac{L}{10}}=10^{-12} \times 10^{4.2}=1.58 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \text { or } \\
& I_{2}=I_{0} 10^{\frac{L}{10}}=10^{-12} \times 10^{6.5}=3.16 \times 10^{-6} \mathrm{~W} \mathrm{~m}^{-2} \text { or } \\
& \frac{I_{2}}{I_{1}}=10^{6.5-4.2} \text { or } \frac{I_{2}}{I_{1}}=\frac{10^{6.5}}{10^{4.2}} \checkmark \\
& \frac{I_{2}}{I_{1}}\left(=\frac{3.16 \times 10^{-6}}{1.58 \times 10^{-8}} \text { or } 10^{6.5-4.2}\right)=200
\end{aligned}
$$

Correct values for I_{1} or I_{2} or a correct rearranged substitution can gain M1
Ignore any units given
Accept anything from a correct calculation that rounds to 200 to 2SF
(c) Intensity level must be stated
uses a logarithmic scale \checkmark
which matches the response of the human ear \checkmark
Do not allow matches the frequency response of the human ear for the second mark.
Mark 2 is dependent on mark 1
(d) \mathbf{P} and \mathbf{Q} would hear (all frequencies) at lower volume/quieter than \mathbf{R}. \checkmark

P would experience most hearing loss at high frequencies (compared to \mathbf{R}) \checkmark
Q would experience most hearing loss at/around 4 kHz (compared to \mathbf{R}) \checkmark
If no other marks are given allow 1 mark for
P hears at a lower volume/quieter than R and Q's hearing loss is frequency dependent $\sqrt{ }$
3. (a) Frequency does not change \checkmark

Amplitude is reduced \checkmark
(b) Ossicles lever system produces increase in force \checkmark

Area of oval window much less than area of ear drum \checkmark

Pressure $=F / A$ so large increase in pressure \checkmark
(c) $\quad I=1.0 \times 10^{-12} \mathrm{~W} \mathrm{~m}^{-2} \quad \checkmark \times 10^{8.2} \checkmark$

$$
I=1.6 \times 10^{-4} \mathrm{~W} \mathrm{~m}^{-2} \checkmark
$$

(d) $\quad P=1.6 \times 10^{-4} \times 4 \times \pi \times 2.02 \checkmark$
$P=8.0 \times 10^{-3} \mathrm{~W} \checkmark$
(c) (i) Ageing; loss increases as fincreases \checkmark

Allow higher frequencies are lost
5. (a) (i) Reading would be 60 dBA as 1 kHz is the reference frequency
(at the threshold of hearing).
(ii) dB reading would be 60 dB as power is the same/not frequency dependent.
dBA reading would be less than 60 as 500 Hz has a higher threshold intensity / ear is less sensitive.
(b) Intensity at meter $=2 /(4 \times \pi \times 5 \times 5)\left(=6.37 \times 10^{-3}\right)$

Intensity reading $=10 \log \left((2 /(4 \times \pi \times 5 \times 5)) / 1.0 \times 10^{-12}\right)$
Intensity reading $=98 \mathrm{~dB}$
Allow ecf here from intensity calc. to get a 'correct' answer:
Use of 2 as intensity gains 0 for 123 dB
Use of $2 / 5$ as intensity gains 1 for 116 dB or any use of 2 and a power of 5 multiplied also for 1 mark.

Use of $2 / 5^{2}$ as intensity gains 2 for 109 dB or use of $2 / \pi 5^{2}$ gains 2 marks

