

A-Level Physics

Physics of the Ear

Mark Scheme

Time available: 70 minutes Marks available: 37 marks

www.accesstuition.com

Mark schemes

1.

(a) Calculation of area

$$A (= 4\pi r^2) = 4\pi 12^2 (= 1810) \checkmark_1 (m^2)$$

Calculation of intensity

$$I = \frac{P}{A} = \frac{17}{1810} (= 9.49 \times 10^{-3}) \checkmark_2 (\text{W m}^{-2})$$

ecf for \checkmark_2 if area calculation attempted

Calculation of intensity level

$$I = 10 \log \frac{9.49 \times 10^{-3}}{10^{-12}} = 100 \checkmark_3$$

ecf for \checkmark_3 even if no area calculation attempted

3

2

(b) The sound would be quieter ✓

ear is most sensitive at 3 kHz <

[5]

2. (a

(a)
$$I \propto \frac{1}{A} = \frac{1}{r^2}$$
 or

$$P = IA = 3.4 \times 10^{-8} \times 4\pi 11^2 \checkmark (=5.17 \times 10^{-5} \text{ W})$$

Either (
$$I = \frac{3.4 \times 10^{-8} \times 11^2}{7^2}$$
 or $I = \frac{P}{A} = \frac{5.17 \times 10^{-5}}{4\pi 7^2}$)

$$= 8.4 \times 10^{-8} \text{ W m}^{-2} \checkmark$$

M1 Working mark

Evidence of either a proportion calculation or calculation of power from intensity

Use of $I \propto \frac{1}{r^2}$ with the wrong factor for r still scores M1 (but not M2)

M1 cannot be awarded if πr^2 is used for the area but M2 can still be awarded.

1 1 (b) One from

$$I_1 = I_0 10^{\frac{1L}{10}} = 10^{-12} \times 10^{4.2} = 1.58 \times 10^{-8} \text{ W m}^{-2} \text{ or}$$

$$I_2 = I_0 10^{\frac{IL}{10}} = 10^{-12} \times 10^{6.5} = 3.16 \times 10^{-6} \,\mathrm{W} \;\mathrm{m}^{-2} \;\mathrm{or}$$

$$\frac{I_2}{I_1} = 10^{6.5-4.2}$$
 or $\frac{I_2}{I_1} = \frac{10^{6.5}}{10^{4.2}} \checkmark$

$$\frac{I_2}{I_1} \left(= \frac{3.16 \times 10^{-6}}{1.58 \times 10^{-8}} \text{ or } 10^{6.5 - 4.2} \right) = 200 \quad \checkmark$$

Correct values for I_1 or I_2 or a correct rearranged substitution can gain M1

Ignore any units given

Accept anything from a correct calculation that rounds to 200 to 2SF

(c) Intensity level must be stated

uses a logarithmic scale ✓

which matches the response of the human ear \checkmark

Do not allow matches the **frequency** response of the human ear for the second mark.

Mark 2 is dependent on mark 1

(d) P and Q would hear (all frequencies) at lower volume/quieter than R. ✓

P would experience most hearing loss at high frequencies (compared to R) ✓

Q would experience most hearing loss at/around 4 kHz (compared to R) ✓

If no other marks are given allow 1 mark for

P hears at a lower volume/quieter than R and Q's hearing loss is frequency dependent ✓

3. (a) Frequency does not change √

Amplitude is reduced √

(b) Ossicles lever system produces increase in force ✓

[9]

1 1 1

1

1

1 1

1 1

1

		Area of oval window much less than area of ear drum ✓		1	
F		Pressure = F/A so large increase in pressure \checkmark			
	(c)	<i>I</i> = 1.	$0 \times 10^{-12} \mathrm{W m^{-2}} \qquad \checkmark \times 10^{8.2} \checkmark$	1	
		<i>I</i> = 1	$.6 \times 10^{-4} \text{ W m}^{-2} \checkmark$	1	
	(d)	<i>P</i> = 1	1.6 x 10^{-4} x 4 x π x 2.02 \checkmark	1	
		P = 8	$3.0 \times 10^{-3} \mathrm{W} \checkmark$	1	[10]
4.	(a)		num intensity heard by normal / average ear √ equency of 1kHz √	2	[10]
	(b)	 b) Response of ear is logarithmic √ Allows very <u>large range</u> of intensities to be on <u>sensible scale</u> √ 			
	(c)	(i)	Ageing; loss increases as f increases √ Allow higher frequencies are lost	2	
		(ii)	Noise; loss increases up to 4 kHz √ then decreases after this frequency √ Allow loss increases and then decreases for 1 mark Allow greatest loss at 4kHz for 2 marks	2	1
5.	(a)	(i)	Reading would be 60 dBA as 1 kHz is the reference frequency (at the threshold of hearing).	1	[7]
		(ii)	dB reading would be 60 dB as power is the same/not frequency dependent.		
			dBA reading would be less than 60 as 500 Hz has a higher threshold intensity / ear is less sensitive.	2	

(b) Intensity at meter = $2/(4 \times \pi \times 5 \times 5)$ (= 6.37 × 10⁻³)

Intensity reading = $10 \log((2/(4 \times \pi \times 5 \times 5))/1.0 \times 10^{-12})$

Intensity reading = 98 dB

Allow ecf here from intensity calc. to get a 'correct' answer:

Use of 2 as intensity gains 0 for 123 dB

Use of 2/5 as intensity gains 1 for 116 dB or any use of 2 and a power of 5 **multiplied** also for 1 mark.

Use of $2/5^2$ as intensity gains 2 for 109 dB or use of $2/\pi 5^2$ gains 2 marks

3

[6]