

A-Level Physics

Physics of the Ear

Question Paper

Time available: 70 minutes Marks available: 37 marks

www.accesstuition.com

(a)	A point source of sound has a power of 17 W.
	Calculate, in dB, the intensity level at a distance of 12 m from the source.
	intensity level = dB (3)
(b)	The frequency of a sound is increased from 3.0 kHz to 8.0 kHz with no change in intensity.
	One change in the sound perceived by a person with normal hearing is an increase in pitch.
	Explain one other change to the sound perceived by the person as the frequency is increased from 3.0 kHz.
	(2) (Total 5 marks)

1.

Cus	ee customers, P , Q and R , are sitting in a café listening to music from a loudspeaker. tomer P is 11 m from the loudspeaker. At the position of customer P , the sound intensity is $\times 10^{-8}$ W m ⁻² .	
(a)	Customer P moves to a distance of 7.0 m from the loudspeaker.	
	Calculate the sound intensity at the new position of customer P . Assume that the loudspeaker is a point source.	
	sound intensity = W m ⁻²	()
(b)	The sound intensity level is 65 dB at the position of customer ${\bf Q}$ and 42 dB at the position of customer ${\bf R}$.	
	Calculate the ratio $\frac{\text{sound intensity at the position of } \mathbf{Q}}{\text{sound intensity at the position of } \mathbf{R}}$	
	ratio =	(
(c)	Customer Q perceives the loudness of the sound differently to customer R .	
	Discuss whether the use of intensity level or intensity is more appropriate to compare the perceived loudness.	
		(

2.

(u)	Customers F, & and K move to the same distance nom the loudspeaker.	
	Customer P is 80 years old and has hearing loss due to her age.	
	Customer Q is 35 years old and has hearing loss due to working in an extremely no environment.	visy
	Customer R is 35 years old and has no hearing loss.	
	The hearing defects of P and Q affect their perception of the music being played.	
	Describe how their perceptions are different from that of R.	
		_
		_
		_
		_
		_
		_
		_
) Total 9 mark)
(a)	Sound waves are incident on a human ear.	
	Describe how the frequency and amplitude of the vibrations change as the wave is transmitted through the ear to the fluid in the inner ear.	
		_
		_
		_
		- - (

•		•	source of sound.	The
te in, W m^{-2} , the inte	ensity of the sou	nd at the meter.		
		intensity =	W r	n ⁻²
	s 2.0 m from the	source which is emi	tting sound equal	lly in all
te the power emitted	by the source.			
ו ו	y level reading on the lite in, W m ⁻² , the integrated in the lite in the lit	y level reading on the sound meter is $^{-1}$ ite in, W m $^{-2}$, the intensity of the sound intensity meter is 2.0 m from the	y level reading on the sound meter is 82 dB. Ite in, W m ⁻² , the intensity of the sound at the meter. intensity = und intensity meter is 2.0 m from the source which is emins.	intensity =W rule intensity of the sound at the meter.

(a)		ne the threshold of hearing, $I_{ m o}$.
(b)		nd intensity levels are usually measured in decibels which is based on a logarithmic
(6)	scal	e. State two reasons why this logarithmic scale is used. on 1
	reas	on 2
(c)	how	ring loss might be due to ageing or exposure to excessive noise. For each cause, stat the hearing loss varies with frequency over the audible range.
	(i)	Loss due to ageing.
	(ii)	Loss due to excessive noise.
		(Total 7
(a)	usin	bund source of constant output power is used to generate a sound which is measured g a sound meter. When set to the dB scale, the sound meter displayed 60 dB as the ling when the frequency of the sound was 1 kHz.
	(i)	State and explain what the reading would be for a sound of frequency 1 kHz if the meter was changed to the dBA scale.

	(ii)	State and explain what would happen to the reading on each scale if the frequency of the sound was changed to 500 Hz.	of
			(2)
(b)	which is se Calc	Irill is operated in an otherwise silent room. The drill produces sound of power 2.0 W ich is given out equally in all directions. A sound meter is placed 5.0 m from the drill and set to the dB scale. Iculate the reading on the sound meter. $I_0 = 1.0 \times 10^{-12} \ Wm^{-2}$	k
	<i>I</i> ₀	$_0$ – 1.0 × 10 $^{-2}$ W III $^{-2}$	
		an a viva s	
		answer = dB (Total 6	(3) marks)