

Physics of the Eye

Mark Scheme

Time available: 61 minutes Marks available: 43 marks

Mark schemes

1. (a) hypermetropia $\sqrt{ }$
(b) Use of $P=\frac{1}{u}+\frac{1}{v}$ correctly. Must see correct substitution for u
or calculation for $v, v=\left(4-\frac{1}{0.75}\right)^{-1}+\sqrt{ }(=0.375 m)$
Correct substitution in $m=\frac{v}{u}{ }_{2} \boldsymbol{v}\left(=\frac{0.375}{0.75}\right)$
$0.50{ }_{3} \sqrt{ }$
Allow PoT for ${ }_{1} \sqrt{ }$ and ${ }_{2} \sqrt{ }$
Allow ecf for ${ }_{2} \sqrt{ }$
No ecf or PoT for ${ }_{3} \sqrt{ }$
(c) \mathbf{X} - cornea, \mathbf{Y} - lens, \mathbf{Z} - iris \checkmark

X / cornea
Form image (on retina) / primary refractor / most of refraction takes place $\sqrt{ }$
$\mathbf{Y} /$ lens
Accommodation / change shape to view objects at different distances \checkmark

Z / iris
Control the amount of light entering the eye \checkmark
First mark is for correctly naming all three parts
Other marks can be gained for attaching the correct description to either the label or the name (if parts not correctly identified)
2. (a) $+2.00-0.5075$
(b) The mark scheme gives some guidance as to what statements are expected to be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2) and 5 or 6 mark (L3) answer.

Mark	Criteria
6	All 3 areas covered in some detail. 6 marks can be awarded even if there is an error and/or parts of one aspect missing.
5	All 3 areas covered at least 2 in detail. Whilst there will be gaps, there should only be an occasional error.
4	Two areas successfully discussed, or one discussed and two others covered partially. Whilst there will be several gaps, there should only be an occasional error.
3	One area discussed and one discussed partially, or all three covered partially. There are likely to be several errors and omissions in the discussion.
2	Only one area discussed, or makes a partial attempt at two areas.
1	None of the three areas covered without significant error.
0	No relevant analysis.

Ray diagram

- Concave lens
- Principal axis shown
- Focal length labelled / principal focus labelled
- Rays bend outward at lens
- Object beyond focal length
- Image inside focal length
- Virtual image smaller than object
- Object and image labelled

Description of myopia

- Far point of eye closer than infinity
- Can't focus on objects further than far point
- Image formed in front of retina
- Can focus near objects but not those far away

Explanation for lens correcting vision

- Student is incorrect due to magnification factor < 1 / smaller image than object
- Use of concave lens
- Image is formed on retina
- Creates image closer than the eye's unaided far point (and further than eye's unaided near point)

AO1-1
AO2-3
AO3-2
3. (a) Bright light uses only cones and very dim light uses only rods \checkmark The first mark may be in either answer and is independent.

Comparison between high resolution in bright light and low resolution in low light \checkmark Because cones have a nerve each, rods share nerves \checkmark

Ignore clearer, more focused.
Comparison between coloured image in bright light and black and white image in low light $\sqrt{ }$
Cones see in colour, rods see in black and white \checkmark
If no comparison is given award one mark max for one valid statement about resolution and one about colour, eg bright light is in colour and high resolution.
The explanation must match the description to gain credit.
(b) Adaptation \checkmark
(c) Takes time for rods to adapt to the dark \checkmark

First marking point is for time taken, ignore wrong term for process.
Time for rods to regenerate rhodopsin/visual purple/ reverse the effects of bleaching the rods \checkmark

It allows the pirate's eye to see immediately in low light levels / the pirate's eye is already dark-adapted \checkmark

Rods must be mentioned in answer for 3 marks.
4. (a) Myopia
(b) Rays bends inward at cornea on both diagrams \checkmark

Figure 1 image in front of retina \checkmark
Figure 2 image on retina \checkmark
Concave lens drawn, which bends rays outward \checkmark
Max 3, if light rays are not drawn with a ruler

(c) rejection of C/+1.95 D since it is the wrong shape / wrong sign / convex / corrects wrong defect \checkmark_{1}
$\checkmark 1$ must have a valid reason

Any valid substitution demonstrating $P=\frac{1}{f}$ and evidence of the correct usage of u and $v \sqrt{2}_{2}$
$\checkmark{ }_{2} f$ may be calculated and substituted or P used as $\frac{1}{f}$ in equation. Ignore use of $\frac{1}{x}$, correct use of u, v must be seen

For virtual image location v must be subject

1st valid calculation of either virtual image location or aided near / far point for A, B or C
or
calculation of lens needed to correct far point
or
calculation of lens needed to see number plate $\sqrt{ } 3$
For aided near/far point u must be subject
Ignore PoT and sign errors
\checkmark_{3} and \checkmark_{4}
Mark 3 (options)
Lens to correct far point $P=-1.82 \mathrm{D}$ or $f=-0.55 \mathrm{~m}$
Lens to see number plate $P=-1.77$ D or $f=-0.57 \mathrm{~m}$
Lens C speedometer $v=-20 \mathrm{~m}$
Lens C number plate $v=53 \mathrm{~cm}(=0.53 \mathrm{~m})$
$2^{\text {nd }}$ valid calculations of either virtual image location or aided near / far point for A, $B \checkmark_{4}$

Mark 3 or Mark 4 (options)
Lens A speedometer $v=-24 \mathrm{~cm}$
Lens A number plate $v=-45 \mathrm{~cm}$
Lens B speedometer $v=-27 \mathrm{~cm}$
Lens B number plate $v=-55 \mathrm{~cm}$
Lens A aided far point $u=\infty(-2.76 m)$
Lens A aided near point $u=55 \mathrm{~cm}$
Lens B aided far point $u=2080 \mathrm{~cm}$ (= 20.8 m)
Lens B aided near point $u=45 \mathrm{~cm}$

Lens $\mathbf{B} /-1.77 \mathbf{D}$ because it is the only lens where both number plate and speedometer can be seen (lens A cannot focus on speedometer) \checkmark_{5}
\checkmark_{5} must be supported by calculations for B showing both number plate and speedometer can be seen
Identification of the lens with no supporting evidence scores 0 .
5.
(a) Eye lens cannot be made powerful enough / rays cannot be bent enough / eyeball is too short \checkmark
cannot be brought to a focus on the retina / fovea / back of the eyeball \checkmark

Accept not strong / fat / convex enough
Do not accept fat enough - neutral answer
Accept rays would be / are focused behind the retina
(b) $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
$\frac{1}{0.24}+\frac{1}{v}=2 \checkmark$
$\mathrm{v}=(-) 46(\mathrm{~cm}) \checkmark$
ans to 2 sig figs \checkmark
Use of 2 and $1 / 24$ is $A E$
Answer 0.46 gets 1 working mark
(c) \mathbf{D} the eye's unaided near point
(d) first correct ray \checkmark completed ray diagram with two rays and 'image' drawn labelled object, image and at least 1 principal focus. \checkmark

First two marks are for a diagram showing a virtual image Third mark is for any diagram. Do not allow f for F unless other labelling is present.

