

A-Level Physics

Potential Dividers

Mark Scheme

Time available: 77 minutes Marks available: 58 marks

www.accesstuition.com

Mark schemes

(a)

1.

Use of
$$V_0 = \frac{R_1}{R_1 + R_2} \times V_{in}$$

OR

$$V_1: V_2 = R_1: R_2 \checkmark$$

 $(R =) 1.7 (\Omega) \checkmark$ Alternative MP1: pd across the variable resistor = 11.25 V OR current = 0.45 A

2

2

(b) use of $V = IR \checkmark$

$$(R =) 4.7 (\Omega) \checkmark$$

(c) Temperature increases so resistance increases ✓

Vibration of the lattice ions increases (with temperature) \checkmark

More collisions between the (conduction) electrons and the lattice ions (at higher temperature) \checkmark

(d) use of
$$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \checkmark$$

 $(R =) 4.8 (\Omega) \checkmark$

Alternative MP1:

determines I_T current in battery (I_T = 2.48 A) and uses V = IR

2

3

(e) use of
$$P = \frac{V^2}{R} \checkmark$$

(*P* =) 30 (W) ✓ *Ecf from* (*d*)

(f) Voltage range is wider 0–12 V (in Figure 4's circuit)

OR

bulb won't light at lower range so control is unaffected \checkmark

Efficiency is less because more power dissipated in Figure 4 (for any particular voltage across the lamp compared to this voltage across the lamp in Figure 2) \checkmark

At any voltage across the lamp there is always 12 V across the resistor in Fig 4 which produces heating whereas only the remaining portion of 12 V is across the resistor in Fig 2 \checkmark

[14]

3

2

3

[5]

2.

(a)

 $R_{\rm LDR}$ without light = 300 k Ω 🗸

$$I = \frac{V}{R} = \frac{5}{310 \times 10^3} = 16.1 \times 10^{-6} \text{ A } \checkmark$$

Allow ecf for their R

(b) *V* with without light = $IR = 16.1 \times 10^{-6} \times 300 \times 10^{3} = 4.84 \text{ V} \checkmark$ ecf from (a) Allow 92–100 kΩ

With light $V = \left(\frac{93}{93+10}\right) \times 5.0 = 4.51 \, \text{V} \checkmark$

Conclusion and calculate of change in voltage and comparison with 1.25 V√

4.8 – 4.5 = 0.3 V so no. Allow 1 sf (allow ecf)

3.

(a) Acceptable line ✓

Condone one failure from the following list

- A. Line straight up to point 8 (expect ruled but condone freehand drawing)
- B. Line shows balance of points on each side of drawn line
- C. Line goes within region of data cross
- D. Appropriate continuous transition between line and curve
- E. Beyond point 12 shows either curve of decreasing gradient OR straight line through points 12 to 15
- F. Thin line and non-variable thickness
- G. Line of acceptable quality, eg not hairy or kinked

Please annotate on CMI+

The line must intersect with the cross of the data point. However, condone point 14 or 15 being off line of best fit for a smooth curve. Condone partially erased and redrawn. Do not allow double line under any circumstance. Allow a curve with a slight inflection at point 14 (see example below)

Allow a split line where linear section has been extrapolated to the top of the grid e.g.

1

1

- (b) Circle drawn around data point 9 (8, 360 × 10⁻³) √
 Condone circle drawn around data point 10 (8.7, 390 × 10⁻³) provided that linear section of line intersects with this cross.
- (c) Correct read off for voltage from candidate line ${}_{1}\sqrt{}$ *This voltage must be within one half-square of actual value.*

Correct answer using $\begin{pmatrix} \frac{\text{their V}}{0.55} & 22.2 \\ 22.2 \end{pmatrix} \times 100_2 \checkmark$

Penalise mid-calculation rounding. Condone missing % sign; 2 or 3 significant figures for answer. Penalise Physics Error of using gradient of tangent to determine the resistance.

(d) circuit **D** is correct $_1\checkmark$

circuit A is incorrect because the ammeter is not measuring the current in R

OR

ammeter is not in series with R

OR

the <u>ammeter</u> is measuring the current in the power supply $_2\checkmark$

circuit **B** is incorrect because the voltage range (shown in the data) cannot be produced

OR

cannot achieve voltage less than (about) 5 V $_3 \checkmark$

circuit C is incorrect because the voltmeter is not in parallel with R

OR

the voltmeter is not measuring the voltage across R

OR

the <u>voltmeter</u> reading equals emf minus voltage across R $_4 \checkmark$

Ignore unclear or incorrect explanation for MP1

 $_2\checkmark_3\checkmark$ and $_4\checkmark$ are awarded for correct explanations not for a statement that a circuit is incorrect.

for $_1 \checkmark$ accept implied answer that circuit **D** is correct if circuits **A**, **B** and **C** are <u>all</u> stated to be incorrect

for $_2 \checkmark$ any suggestion that in circuit **A** the voltmeter is in the wrong position forfeits the mark

Condone circuit **B** is incorrect "because the voltage cannot go down to zero" for $_{3}\checkmark$.

Or

Condone circuit **B** is incorrect "there is less variation in voltage <u>because</u> the resistors are in series" $_{3}\checkmark$.

for weak statements in MP2 and MP4 1 mark for 'circuit **A** is incorrect because <u>ammeter</u> is in wrong place' and 'circuit **C** is incorrect because <u>voltmeter</u> is in the wrong position'

If A / B / C is identified as correct then **MAX 2** for two statements that correctly explain why the others are unsuitable.

If no other marks awarded: **MAX 1** for "Circuit **B** is correct because the ammeter in <u>series</u> with resistor **R** and the voltmeter is in <u>parallel</u> with **R**".

[8]

4.	(a)	resistance of lamp B and D = $3.5^2/4.1 = 3.0 (2.98)(\Omega) \checkmark$ resistance of lamp A and C = $6.0^2/6.0 = 6.0 (\Omega) \checkmark$ pd across lamp B and lamp D = $3/9 \times 9.0 = 3.0$ (V) OR pd across lamp A and C = 6 hence A and C normal brightness \checkmark <i>Can justify in terms of current i.e. current needed by A and C is 1 A</i> <i>provided resistance values calculated</i> <i>Must have some correct working for conclusion mark</i>	1	
			1 1 1	
	(b)	the pd across new lamp = 0 / E does not light \checkmark no current in E \checkmark	-	
		other lamps are not affected \checkmark because the current in the lamps/pd across lamps does not change \checkmark 2^{nd} and 3^{rd} marks conditional on 1^{st} mark	1	
			1 1 (MAX 3)	
	(c)	<pre>in first circuit current in battery = 9.0/4.5 = 2.0 A ✓ in second circuit current in battery = 9.0/7 = 1.2857 A ✓ hence current in battery decreases ✓ Allow ecf from (a) Original current = 2A can come from (a) and score here If say circuit resistance increases so current decreases and no other marks awarded score 1 mark</pre>	1 1	
			1 [10]
5.	(a)	Length of resistance wire = $50 \times 2 \times 3.14 \times 4 \times 10^{-3} = 1.26 \text{ m} \checkmark$ or $50 \times 3.14 \times 8 \times 10^{-3}$	1	
		Substitution of data in resistance formula		
		or $A = \rho L/R$ seen \checkmark ecf for incorrect length from attempt at a calculation	1	
		Area of cross section = 2.1(1) × 10^{-9} (m ²) \checkmark	1	
	(b)	Maximum possible pd across 0.25 k Ω is 9 V 🗸	1	
		(Max power dissipated) = $9^2/250 = 0.32$ W so resistor is suitable \checkmark	1	
		www.accesstuition.com		ge 7 c

Page 7 of 10

When resistor dissipates maximum power

 $V^2 = 0.36 \times 250$ so max $V = 9.5 V \checkmark$

This is higher than the supply pd so this power dissipation so will not be reached \checkmark

OR

Power dissipated when output is 5 V = $4^2/250 = 0.064 \text{ W} \checkmark$

Which is below the max power dissipation of 0.36 W \checkmark

 $9^2/250 = 0.32$ W with incorrect conclusion scores 1 Second mark implies the first $9^2/0.36 = 225 \Omega$ alone is not a useful calculation in the context. Still need to explain the effect of using the 250 Ω First mark is for a valid useful calculation

(c) Use of potential divider formula to determine resistance of parallel combination \checkmark

0.313 kΩ √

Use of equation for resistors in parallel \checkmark

540 Ω 🗸

Alternative to find resistance of combination Current in circuit at room temp = $4/250 = 16 \text{ mA } \checkmark$ Resistance of combination = $5/16\text{mA} = 313 \Omega \checkmark$ OR $\frac{V_{combination}}{V_{250}} = \frac{R_{combination}}{250}$ $\frac{5}{4} = \frac{R_{combination}}{250}$ $R_{combination} = 313 \Omega$

OR

Current in circuit at room temp = $4/250 = 16 \text{ mA} \checkmark$

Current in thermistor = $5/750 = 6.7 \text{ mA} \checkmark$

Current in R = 9.3 mA ✓

R = 5/9.3 = 540 Ω ✓

2sf answer 🗸

(only allowed with some relevant working leading to a resistor value)

Max 5

(d) Resistance of <u>thermistor</u> decreases \checkmark

Output pd decreases since

resistance of the parallel combination /circuit decreases

OR

lower proportion of pd across the parallel combination (or higher proportion across 250Ω)

OR

6.

	higher current so greater pd across the 0.25 k resistor \checkmark Accept correct consequences for R increasing with temperature for 1 mark	1 [12]			
(a)	A combination of resistors in series connected across a voltage source (to produce a required pd) √ <i>Reference to splitting (not dividing) pd</i>	1			
(b)	When R increases, pd across R increases \checkmark				
	Pd across R + pd across T = supply pd \checkmark				
	So pd across T / voltmeter reading decreases √ <i>Alternative:</i>				
	Use of V= $\frac{R_1 \times V_{tot}}{R_1 + R_2}$				
	V_{tot} and R_2 remain constant \checkmark So V increases when R_1 increases \checkmark				
		3			
(c)	At higher temp, resistance of T is lower \checkmark	1			
	So circuit resistance is lower, so current / ammeter reading increases \checkmark	1			

(d) Resistance of T = 2500 Ω

	Current through T = V / R = 3 / 2500 = $1.2 \times 10^{-3} \text{ A} \checkmark$ (Allow alternative using $V_1/R_1 = V_2/R_2$)		
	pd across R = 12 – 3 = 9 V The first mark is working out the current	1	
	Resistance of R = V / I = 9 / 1.2 × 10^{-3} = 7500 $\Omega \checkmark$ The second mark is for the final answer	1	
(e)	Connect the alarm across R instead of across T \checkmark allow: use a thermistor with a ptc instead of ntc.	1	[9]