

A-Level Physics

Progressive Waves

Mark Scheme

Time available: 70 minutes Marks available: 51 marks

Mark schemes

1. (a) Use of $f=\frac{1}{T}$ or number of waves $=\frac{6 \times 10^{-9}}{\text { their } T} \checkmark$
2.3×10^{6},
Condone POT error in MP1
(b) Use of speed $=\frac{\text { distance }}{\text { time }}$

OR
Divides their distance by 2
OR
Difference in travel time divided by $2 \checkmark$
$1.6 \times 10^{3}(\mathrm{~m}) \checkmark$
(c) Use of $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \checkmark$
$\left(n_{2}=\right) 1.3(1) \checkmark$
(d) Use of $n=\frac{c}{c_{s}}$ or use of $c=f \lambda \checkmark$

Ecf from (c) in use of $n=n=\frac{c}{c_{s}}$ and condone their c in use of $c=f \lambda$
$6.0 \times 10^{-7}(\mathrm{~m}) \checkmark$
Ecf from (c)
Answer $=6.1 \times 10^{-7}(\mathrm{~m})$ for $n=1.3$
2. (a) $f\left(\right.$ from $\frac{1}{T}$) in range $61 \pm 1 \mathrm{~Hz}_{1} \sqrt{ } \checkmark$

OR
$61 \pm 3 \mathrm{~Hz}_{{ }_{12} \mathrm{~V}}$
maximum 1 mark for POT error OR incorrect rounding
no credit for 1 sf; treat 60 as 2 sf unless clearly rounded to 6×10^{1}
for ${ }_{1} \sqrt{ } \sqrt{ }$ require $\geq \mathbf{2} \boldsymbol{s f}$ that rounds to not less than 60 and not more than 62
for ${ }_{12} \sqrt{ }$ require $\geq \mathbf{2}$ sf that rounds to not less than 58 but less than 60 OR for ${ }_{12} \sqrt{ }$ require $\geq \mathbf{2} \boldsymbol{s f}$ that rounds to more than 62 but not more than 64 if incorrect rounding leads to 60 treat this as 1 sf and give no credit use of $\frac{1}{T}$ does not have to be seen; marks are for final answer seen
(b) (figures) 804 and 226 seen in working ${ }_{1} \checkmark$
$\lambda=$ difference between their readings $\times 2$;
given to nearest mm; expect 1.156 (m)
OR
to nearest cm; expect $1.16(\mathrm{~m})_{2} \sqrt{ }$
for ${ }_{1} \sqrt{ } 578$ is not enough
for ${ }_{2} \sqrt{ }$ range is based on $x=(804-226=) 578 \pm 2 \mathrm{~mm}$;
give no credit for POT errors eg 115.6 / 116 etc accept 1156 mm etc if unit on answer line is amended
(c) c correctly evaluated to ≥ 2 sf from their $f \times$ their $\lambda \checkmark$
substituted data may be from 03.1/2 final answers or unrounded (intermediate) data from working
expected answer $=61 \times 0.578 \times 2=70.5 \mathrm{~m} \mathrm{~s}-1$
(d) μ correct to 2 sf based on their f and their λ earns both marks ${ }_{1} \sqrt{2} \sqrt{ }$
for incorrect / missing μ

EITHER

use of $c=\sqrt{\frac{T}{\mu}}$
OR
use of $f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}$
for ${ }_{1} \checkmark$ their value of μ can be given to ≥ 2 sf but must agree with $\frac{0.5 \times g}{(\text { their } f \times \lambda)^{2}}$ OR $\frac{0.5 \times g}{(\text { their } c)^{2}}$ when rounded to 2 $\boldsymbol{s f}$; use of $g=9.81$ or 9.8 only; no ecf for mixed units expected answer $\mu=9.9 \times 10^{-4}\left(\mathrm{~kg} \mathrm{~m}^{-1}\right)$: be wary of which approach has been taken by the candidate
for ${ }_{12} \sqrt{ }$ 'use of' means allow either
rearranges so that μ is the subject eg $\mu=\frac{T}{c^{2}}$
(accept $\mu=\frac{m g}{c^{2}}, \frac{T}{c^{2}}=\mu$ etc) or
substitution of all relevant data including their c into a correct expression with μ as the only unknown
for T allow $4.9 / 4.91 / 4.905$ (accept 0.5×9.81 or 0.5×9.8); allow mixed units; allow 0.5 g
OR 'use of' means allow either
rearranges to $\mu=\frac{T}{(2 \times l \times f)^{2}}$ OR $\frac{T}{4 \times l^{2} \times f^{2}}$ or
substitution of all relevant data including their l and f leaving μ as the unknown; allow sub of λ for $2 l$ watch for possible error $\lambda=L$
(e) $0.71(\mathrm{~mm}) \checkmark$
only answer that gets mark
repeat readings at different points along the rod and calculate an average / mean ${ }_{1} \checkmark$ repeat readings in different directions (perpendicular to the rod) and calculate an average / mean ${ }_{2} \sqrt{ }$
reject / discard anomalous readings before calculating an average / mean ${ }_{3} \checkmark$
award ${ }_{123} \sqrt{ }=1$ MAX for checking at different points / in different directions to confirm that the rod is uniform / that there are no anomalies
allow 'cylinder' / 'wire' etc for rod
for ${ }_{1} \sqrt{ } \sqrt{ }$ and ${ }_{3} \checkmark$ averaging idea only needs to be seen once;
if averaging idea missing then allow 'repeat at different points and in different directions, then remove anomalies' ${ }_{123} \checkmark=1$ MAX
if 'calculate' is not seen allow 'work out' //'determine'/ 'compute'; anything that sounds like a mathematical process is ok;
'find' / 'obtain' / 'take'/ 'do an average' are just ok;
'get' is not ok
for ${ }_{1} \checkmark$ allow repeat at 'different positions' / 'down / along the rod'
for ${ }_{2} \sqrt{ }$ allow (repeat in different directions) 'around the rod'/
'different orientations'/ 'angles' / 'planes' / 'sides'
for ${ }_{3} \checkmark$ allow 'ignore anomalies';' ‘outlier' = 'anomaly'
reject 'calculate an average to eliminate effect of anomalies'
treat as neutral: 'turn the wheel to close the callipers' / suggestions about calibration
treat as neutral: 'zero callipers before use' this is a procedure to eliminate a source of systematic error
(g) (for use of expected 0.71)
$\rho=8.9(41) \times 10^{3}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$
OR
(for use of 0.53)
$\rho=1.6(05) \times 10^{4}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$
OR
$\rho=\frac{4.51 \times 10^{-3}}{(\text { their } d \text { from }(\mathrm{e}))^{2}}$
OR
attempts to use μ OR 3.5(4) $\times 10^{-3}$ divided by their (recognisable) cross-sectional area ${ }_{1} \checkmark$

AND/OR
evidence showing cross-sectional area $=\frac{\pi d^{2}}{4}$ using their d from (e) (allow πr^{2} using their d) ${ }_{2} \sqrt{ }$
correct answer scores ${ }_{123} \checkmark \checkmark \checkmark$
for ${ }_{123} \checkmark \checkmark \checkmark$ allow an answer that rounds to the correct 2 sf value sample results for expected d

d / mm	A / m^{2}	$\rho / \mathrm{kg} \mathrm{m}^{-3}$
0.71	3.96×10^{-7}	$8.9(41) \times 10^{3}$
0.53	2.21×10^{-7}	$1.6(05) \times 10^{4}$

for ${ }_{1} \sqrt{ }$ accept use of symbols, eg
$\rho=\frac{\mu}{A} /=\frac{3.54 \times 10^{-3}}{A(\times 1)} /=\frac{4 \times \mu}{\pi \times d^{2}} /=\frac{4 \times 3.54 \times 10^{-3}}{\pi \times d^{2}(\times 1)}$
$=\frac{3.54 \times 10^{-3}}{\pi \times r^{2}(\times 1)}$
for ${ }_{2} \sqrt{ }$ expect correct value of A seen or correct values of A or d in working, eg
$\rho=\frac{3.54 \times 10^{-3}}{3.96 \times 10^{-7}(\times 1)} /=\frac{4 \times 3.54 \times 10^{-3}}{\pi \times\left(0.71 \times 10^{-3}\right)^{2} \times(1)}$
accept values ≥ 2 sf for A; allow ecf d and don't penalise POT error in A ord (eg missing $10^{-7}, 10^{-3}$)
3. (a) Waves travel to the boundaries and are reflected \checkmark

Not bounce off ...
two waves travelling in opposite directions interfere/superpose \checkmark
Not superimpose or interferes with itself

Fixed boundaries (cannot move so) are nodes \checkmark
creates nodes and antinodes bland $=0$
In some positions the waves always cancel /interfere destructively to give zero amplitude/no vibration/nodes)
OR
interfere constructively to produce positions of maximum amplitude/maximum vibration/antinodes \checkmark
(b) Use of $f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}} \checkmark$

Either rearranges for μ without substitution or substitutes correctly in the formula

$$
4.2(4.19) \times 10^{-4}(\mathrm{~kg}) \checkmark
$$

(c) $240(244)\left(\mathrm{m} \mathrm{s}^{-1}\right)$
(d) 1 rotation of the peg $=22 \mathrm{~mm} \checkmark$

Or Reads increase in tension produced by the extra extension (about 10 N) from graph and adds to 25

Calculates frequency for their tension
T must be greater than the original 25 N
Condone adding or subtracting extra extension to 0.33 m
If $4.0 \times 10^{-4} \mathrm{~kg}$ used then answer will be in range 448 Hz to 455 Hz
If 4.19×10^{-4} used 438 to 444 Hz
4. (a) Period $=0.2 \times 10^{-14}(\mathrm{~s})$ read off

OR
Recognisable T substituted into $T=1 / f \checkmark$
An acceptable subject (period, time for one cycle, one cycle, T, etc.)
Allow non-standard symbol with unit seen on time.
Allow this subtraction of two times seen in $f=1 / T$
Use of $T=1 / f$ and $c=f \lambda \checkmark$
OR
Use of $\lambda=c T$
Use of here is:
Subject must be seen with substitutions or rearranged equations with $f=1 / T$ and $\lambda=c / f$
Condone power 10 error here
Condone lack of subject in vertical working where rearranged equation with appropriate subject seen at heading of column
$6(.0) \times 10^{-7}(\mathrm{~m}) \checkmark$
Number must be expressed as 6×10^{-7} or 600×10^{-9} or equivalent not enough to see only nano prefix.
(b) (Determines a fraction of cycle)
$\frac{0.04}{0.2}$ or $\frac{2}{10}$ or $\frac{1}{5}$ or 0.2 or $\frac{1.2\left(\times 10^{-7}\right)}{6\left(\times 10^{-7}\right)}$ or 0.2λ seen \checkmark
Condone their fraction $\times 2 \pi$ or their decimal $\times 2 \pi$
For $1^{\text {st }}$ mark
$2 \pi / 5$ OR 0.4π
OR
1.26 or $1.3 \quad \checkmark$

Allow $8 \pi / 5$ OR 1.6π
OR
5.03 or 5.0
(c) (Distance $=) 3 \times 10^{-7} \times 2.37 \times 10^{5}$ seen

OR
(Distance $=) 0.07(11)(\mathrm{m})$ seen \checkmark
Subs into $s=\frac{1}{2} a t^{2} \checkmark$
Condone error in sub for s where formula has been otherwise correctly manipulated with a (or g) as subject
9.88 (3 sf only) \checkmark

Alternative:
$1^{\text {st }}$ mark \quad average speed $=\frac{3 \times 10-7 \times 2.37 \times 105}{0.12}$
$2^{\text {nd }}$ mark $\quad a=\frac{2 \times \text { their average speed }}{0.12}$
$3^{\text {rd }}$ mark $\quad 9.88$
(d) Draws a tangent to the curve at approximately
$t=120 \mathrm{~ms}$ and attempts a gradient calculation \checkmark
Tangent must be a straight line that touches curve and divergent from curve before 90 ms and after 150 ms
(Gradient =) 1.2 (range 1.1 to 1.3) \checkmark
Allow 1.2×10^{-3} (range 1.1×10^{-3} to 1.3×10^{-3}) \checkmark
Ignore units on answer line
$2^{\text {nd }}$ mark is dependent on $1^{\text {st }}$ mark
Max 1 mark for correct answer in range where tangent satisfies above conditions but doesn't quite touch curve (half-square tolerance)
First alternative:
$1^{\text {st }}$ mark
Use of $v=u+$ at with sub for $a=9.88$ or 9.875 and $t=0.12$
$2^{\text {nd }}$ mark
1.2 or 1.19 or 1.185 only

Second alternative:

$1^{\text {st }}$ mark
Use of $s=1 / 2 a t^{2}$ and $d s / d t=$ at with sub for $a=9.88$ or 9.875 and t
$=0.12$
$2^{\text {nd }}$ mark
1.2 or 1.19 or 1.185 only
(e) (instantaneous) Velocity (of the mirror) or (instantaneous) speed (of the mirror) \checkmark

Ignore any units quoted
Do not allow:
Average speed / constant speed
[8]
5. (a) $\pi / 180^{\circ}$ out of phase \checkmark

Do not allow "out of phase".
(b) wavelength $=0.44 \mathrm{~m} \checkmark$
$c(=f \lambda)=145\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \checkmark$
(c) First harmonic frequency $=110 \mathrm{~Hz} \checkmark$
$T=4 \times 110^{2} \times 0.66^{2} \times\left(\frac{3.1 \times 10^{-8}}{0.91}\right) \checkmark$
$71.8 \mathrm{~N} \checkmark$
(d) Extension of string $=3 \times 2 \pi \times 3.0 \times 10^{-3}(=5.65 \mathrm{~cm}) \checkmark$
energy stored $=0.5 \times 71.8 \times 0.0565=2.03(\mathrm{~J}) \checkmark$
Compares calculated energy quantitatively to another energy and draws correct inference, e.g. wire would be moving at about 80 mph so a risk $/ 2 \mathrm{~J}$ is the equivalent of 1 kg mass dropped through 0.2 m so a risk \checkmark

