

A-Level Physics

Progressive Waves

Mark Scheme

Time available: 70 minutes Marks available: 51 marks

www.accesstuition.com

Mark schemes

(a) Use of
$$f = \frac{1}{T}$$
 or number of waves $= \frac{6 \times 10^{-9}}{\text{their } T} \checkmark$

2.3 × 10⁶ √

Condone POT error in MP1

(b) Use of speed = $\frac{\text{distance}}{\text{time}}$

OR

Divides their distance by 2

OR

Difference in travel time divided by 2 \checkmark

	1	,	,	
	4		1	

2

2

(c) Use of
$$n_1 \sin \theta_1 = n_2 \sin \theta_2 \checkmark$$

$$(n_2 =) 1.3(1) \checkmark$$

(d) Use of
$$n = \frac{c}{c_s}$$
 or use of $c = f\lambda \checkmark$
Ecf from (c) in use of $n = n = \frac{c}{c_s}$ and condone their c in use of $c = f\lambda$

6.0 × 10⁻⁷ (m) ✓ Ecf from (c) Answer = 6.1 × 10⁻⁷ (m) for n = 1.3

2

[8]

(a) $f(\text{from } \frac{1}{\tau})$ in range 61 ± 1 Hz $_1 \checkmark _2 \checkmark$

OR

61 ± 3 Hz ₁₂√

maximum 1 mark for POT error OR incorrect rounding

no credit for 1 sf; treat 60 as 2 sf unless clearly rounded to 6 × 10¹

for ${}_{1}\checkmark_{2}\checkmark$ require ≥ 2 sf that rounds to not less than 60 and not more than 62 for ${}_{12}\checkmark$ require ≥ 2 sf that rounds to not less than 58 but less than 60 OR for ${}_{12}\checkmark$ require ≥ 2 sf that rounds to more than 62 but not more than 64 if incorrect rounding leads to 60 treat this as 1 sf and give no credit use of $\frac{1}{T}$ does not have to be seen; marks are for final answer seen

(b) (figures) 804 and 226 seen in working $\sqrt{14}$

 λ = difference between their readings × 2;

given to nearest mm; expect 1.156 (m)

OR

to nearest cm; expect 1.16 (m) $_2\checkmark$

for $_{1}\checkmark$ 578 is not enough for $_{2}\checkmark$ range is based on x = (804 – 226 =) 578 ± 2mm; give no credit for POT errors eg 115.6 / 116 etc accept 1156 mm etc if unit on answer line is amended

2

2

(c) c orrectly evaluated to ≥ 2 sf from their $f \times \text{their } \lambda \checkmark$

substituted data may be from 03.1/2 final answers or unrounded (intermediate) data from working expected answer = $61 \times 0.578 \times 2 = 70.5 \text{ m s} - 1$

(d) μ correct to 2 sf based on their f and their λ earns both marks $\sqrt{24}$

for incorrect / missing μ

EITHER

use of $c = \sqrt{\frac{T}{\mu}}$

OR

use of
$$f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$$

for $_{1}\checkmark$ their value of μ can be given to ≥ 2 sf but

must agree with $\frac{0.5 \times g}{(\text{their } f \times \lambda)^2}$ OR $\frac{0.5 \times g}{(\text{their } c)^2}$ when rounded to 2 sf; use of g = 9.81 or 9.8 only; no ecf for mixed units

expected answer $\mu = 9.9 \times 10^{-4}$ (kg m⁻¹): be wary of which approach has been taken by the candidate

for 12√ 'use of' means allow either

rearranges so that μ is the subject eg $\mu = \frac{T}{c^2}$

(accept
$$\mu = \frac{mg}{c^2}, \frac{T}{c^2} = \mu \text{ etc}$$
) or

substitution of all relevant data including their c into a correct expression with μ as the only unknown

for T allow 4.9 / 4.91 / 4.905 (accept 0.5 × 9.81 or 0.5 × 9.8); allow mixed units; allow 0.5g

OR 'use of' means allow either

rearranges to
$$\mu = \frac{T}{(2 \times l \times f)^2} \text{OR} \frac{T}{4 \times l^2 \times f^2}$$
 or

substitution of all relevant data including their l and f leaving μ as the unknown; allow sub of λ for 2l

watch for possible error $\lambda = L$

2

(e) 0.71 (mm) √

only answer that gets mark

(f) ANY TWO FROM

repeat readings at different points along the rod and calculate an average / mean $_1 \checkmark$

repeat readings in different directions (perpendicular to the rod) and calculate an average / mean $_2 \checkmark$

reject / discard anomalous readings before calculating an average / mean 31

award $_{123}$ \checkmark = 1 MAX for checking at different points / in different directions to confirm that the rod is uniform / that there are no anomalies

allow 'cylinder' / 'wire' etc for rod

for ${}_{1}\checkmark_{2}\checkmark$ and ${}_{3}\checkmark$ averaging idea only needs to be seen once; if averaging idea missing then allow 'repeat at different points and in different directions, then remove anomalies' ${}_{123}\checkmark = 1$ MAX if 'calculate' is not seen allow 'work out' //'determine' / 'compute'; anything that sounds like a mathematical process is ok; 'find' / 'obtain' / 'take' / 'do an average' are just ok; 'get' is not ok for ${}_{1}\checkmark$ allow repeat at 'different positions' / 'down / along the rod'

for $_2 \checkmark$ allow (repeat in different directions) 'around the rod' / 'different orientations' / 'angles' / 'planes' / 'sides'

for $_{3}\checkmark$ allow 'ignore anomalies'; 'outlier' = 'anomaly'

reject 'calculate an average to eliminate effect of anomalies'

treat as neutral: 'turn the wheel to close the callipers' / suggestions about calibration

treat as neutral: 'zero callipers before use' this is a procedure to eliminate a source of systematic error

(g) (for use of expected 0.71)

 $\rho = 8.9(41) \times 10^3 (\text{kg m}^{-3})$

OR

(for use of 0.53)

 $\rho = 1.6(05) \times 10^4 \text{ (kg m}^{-3}\text{)}$

OR

$$\rho = \frac{4.51 \times 10^{-3}}{(\text{their } d \text{ from (e)})^2}$$

attempts to use μ OR 3.5(4) × 10⁻³ divided by their (recognisable) cross-sectional area $\sqrt{14}$

evidence showing cross-sectional area = $\frac{\pi d^2}{4}$ using their d from (e) (allow πr^2 using

their d) $_2 \checkmark$

correct answer scores $_{123}\sqrt{\sqrt{\sqrt{}}}$

for $_{123}\sqrt{\sqrt{4}}$ allow an answer that rounds to the correct 2 sf value sample results for expected d

<i>d</i> /mm	A/m^2	ho/kg m ⁻³
0.71	3.96 × 10 ⁻⁷	$8.9(41) \times 10^3$
0.53	2.21 × 10 ⁻⁷	$1.6(05) \times 10^4$

for $_1 \checkmark$ accept use of symbols, eg

$$\rho = \frac{\mu}{A} / = \frac{3.54 \times 10^{-3}}{A(\times 1)} / = \frac{4 \times \mu}{\pi \times d^2} / = \frac{4 \times 3.54 \times 10^{-3}}{\pi \times d^2 (\times 1)}$$
$$= \frac{3.54 \times 10^{-3}}{\pi \times r^2 (\times 1)}$$

for $_2\checkmark$ expect correct value of A seen or correct values of A or d in working, eg

$$\rho = \frac{3.54 \times 10^{-3}}{3.96 \times 10^{-7} (\times 1)} / = \frac{4 \times 3.54 \times 10^{-3}}{\pi \times (0.71 \times 10^{-3})^2 \times (1)}$$

accept values ≥ 2 sf for A; allow ecf d and don't penalise POT error in A or d (eg missing 10^{-7} , 10^{-3})

1 2 [13]

1

1

3. (a) Waves travel to the boundaries and are reflected \checkmark *Not bounce off ...*

two waves travelling in opposite directions interfere/superpose ✓ Not superimpose or interferes with itself

Fixed boundaries (cannot move so) are nodes ✓

creates nodes and antinodes bland = 0

In some positions the waves always cancel /interfere destructively to give zero amplitude/no vibration/nodes)

OR

interfere constructively to produce positions of maximum amplitude/maximum vibration/antinodes \checkmark

1 Max 3

(b)	Use of $f = \frac{1}{2l} \sqrt{\frac{T}{\mu}} \checkmark$	
	Either rearranges for μ without substitution or substitutes correctly	
	in the formula	1
		1
	4.2 (4.19) × 10 ⁻⁴ (kg) \checkmark	
		1
(c)	240 (244) (m s ⁻¹)	
		1
(d)	1 rotation of the peg = 22 mm \checkmark	
	Or Reads increase in tension produced by the extra extension	
	(about 10 N) from graph and adds to 25	
		1
	extra extension = $22 \times 75/360 = 4.6$ mm	
	(ecf for incorrect circumference) \checkmark	
	$\pi d \times 75/360$ not evaluated =1	
		1
	Total extension = 11 + 4.6 (15.6 mm) so tension 35 - 36N ✓	
	Inspect their length and their tension in the substitution	
		1
	Calculates frequency for their tension	
	T must be greater than the original 25N	
	Condone adding or subtracting extra extension to 0.33 m	
	If 4.0 × 10 ⁻⁴ kg used then answer will be in range 448 Hz to 455 Hz	
	If 4.19 × 10 ⁻⁴ used 438 to 444 Hz	
		1
		[10]

4.

(a)

Period = 0.2×10^{-14} (s) read off

OR

Recognisable T substituted into $T = 1 / f \checkmark$

An acceptable subject (period, time for one cycle, one cycle, *T*, etc.) Allow non-standard symbol with unit seen on time. Allow this subtraction of two times seen in f = 1/T

Use of T = 1 / f and $c = f \lambda \checkmark$

OR

Use of $\lambda = cT$

Use of here is:

Subject must be seen with substitutions or rearranged equations with f = 1/T and $\lambda = c/f$ Condone power 10 error here

Condone lack of subject in vertical working where rearranged equation with appropriate subject seen at heading of column

6(.0) × 10⁻⁷ (m) ✓

Number must be expressed as 6×10^{-7} or 600×10^{-9} or equivalent not enough to see only nano prefix.

(b) (Determines a fraction of cycle)

 $\frac{0.04}{0.2} \text{ or } \frac{2}{10} \text{ or } \frac{1}{5} \text{ or } 0.2 \text{ or } \frac{1.2(\times 10^{-7})}{6(\times 10^{-7})} \text{ or } 0.2 \lambda \text{ seen}\checkmark$

Condone their fraction $\times 2\pi$ or their decimal $\times 2\pi$ For 1st mark

2π/5 OR 0.4 π

OR

1.26 or 1.3 ✓

Allow 8π/5 OR 1.6 π OR 5.03 or 5.0

2

(c) (Distance =) $3 \times 10^{-7} \times 2.37 \times 10^{5}$ seen

OR

(Distance =) 0.07(11) (m) seen √

Subs into
$$s = \frac{1}{2} \operatorname{at}^2 \checkmark$$

Condone error in sub for s where formula has been otherwise correctly manipulated with a (or g) as subject

Alternative:

1 st mark	average speed = $\frac{3 \times 10 - 7 \times 2.37 \times 105}{0.12}$
2 nd mark	$a = \frac{2 \times \text{their average speed}}{2 \times 10^{-2}}$
	0.12
3 rd mark	9.88

(d) Draws a tangent to the curve at approximately

t = 120 ms and attempts a gradient calculation \checkmark

Tangent must be a straight line that touches curve and divergent from curve before 90 ms and after 150 ms

(Gradient =) 1.2 (range 1.1 to 1.3) ✓

Allow 1.2 × 10⁻³ (range 1.1 × 10⁻³ to 1.3 × 10⁻³) \checkmark

Ignore units on answer line

2nd mark is dependent on 1st mark

Max 1 mark for correct answer in range where tangent satisfies above conditions but doesn't quite touch curve (half-square tolerance)

First alternative:

1st mark

Use of v = u +at with sub for a = 9.88 or 9.875 **and** t=0.12

2nd mark

1.2 or 1.19 or 1.185 **only**

Second alternative:

1st mark

Use of $s = 1/2at^2$ and ds/dt = at with sub for a = 9.88 or 9.875 **and** t = 0.12

2nd mark

1.2 or 1.19 or 1.185 only

4

(e) (instantaneous) Velocity (of the mirror) or (instantaneous) speed (of the mirror) ✓

Ignore any units quoted **Do not allow:** Average speed / constant speed

[8]

4

1

2

3

- (a) π / 180° out of phase \checkmark Do **not** allow "out of phase".
- (b) wavelength = 0.44 m \checkmark

5.

c (=
$$f \lambda$$
) = 145 (m s⁻¹) ✓

(c) First harmonic frequency = $110 \text{ Hz} \checkmark$

$$T = 4 \times 110^2 \times 0.66^2 \times \left(\frac{3.1 \times 10^{-8}}{0.91}\right) \checkmark$$

71.8 N√

(d) Extension of string = $3 \times 2\pi \times 3.0 \times 10^{-3}$ (= 5.65 cm) \checkmark

energy stored = $0.5 \times 71.8 \times 0.0565 = 2.03 \text{ (J)} \checkmark$

Compares calculated energy quantitatively to another energy and draws correct inference, e.g. wire would be moving at about 80 mph so a risk / 2 J is the equivalent of 1 kg mass dropped through 0.2 m so a risk \checkmark