

A-Level Physics

Projectile Motion

Mark Scheme

Time available: 81 minutes Marks available: 60 marks

www.accesstuition.com

Mark schemes

(a)

1.

horizontal velocity = $20 \cos 40^\circ = 15.3 \checkmark (m s^{-1})$ Needs minimum 3 sf For MP1 it must be clear that the horizontal velocity has been determined.

horizontal velocity (is constant) / minimum when vertical velocity = 0 \checkmark

2

(b) (vertical velocity)
$$v = 20 \sin 40^\circ (= 12.9) \checkmark (m \text{ s}^{-1})$$

$$s = ut + \frac{1}{2}at^{2}$$

-3 = -12.9t + $\frac{1}{2} \times 9.81t^{2}$ or 3 = 12.9t - $\frac{1}{2} \times 9.81t^{2}$

$$(4.91t^2 - 12.9t + 3.00 = 0)$$

1

For second mark both suvat equation and substitution must be shown. Equation may be rearranged before substitution

2

(c) Use of quadratic formulae with +, - or
$$\pm \checkmark$$

$$eg \ t = \frac{12.9 \pm \sqrt{(-12.9)^2 - 4 \times 4.91 \times 3.00}}{2 \times 4.91}$$

0.258 s and 2.37 s√

Two correct answers alone scores first 2 marks.

Time to reach 3 m once on the way up and once on the way down (OWTTE) \checkmark

Larger value ✓ ecf available for last 2 marks

4

(d) $s = vt = 20 \cos 40^\circ \times 2.37 = 36.3 \text{ m so no} \checkmark$

ecf from **(c)** Calculation must be seen

(e) Gradient is the acceleration AND

area under graph = <u>vertical</u> distance travelled $\sqrt{1}$

Without air resistance: comment about gradient \checkmark_2 comment about area \checkmark_3

With air resistance

comment about gradient \checkmark_4

comment about area \checkmark_5

For each comment on the graph a reason must be given not just a description.

e.g for \checkmark_2

• constant gradient = g or 9.81 m s⁻¹

e.g. for \checkmark_4

 initially steeper gradient since air resistance in same direction as weight (so a > g)

• when line crosses time axis, gradient = g/9.81 / gradient without air resistance as air resistance = 0 when v = 0 /

• After crossing time axis, gradient decreases as air resistance increases with speed

E.g. for \checkmark_3 or \checkmark_5

• total area under graph = 0 since ball starts and finishes on ground

- area between graph and axis is max height/vertical distance
- without air resistance reaches a higher height as area greater

statement referring to area under both graphs gains \checkmark_3 and \checkmark_5

(a) Use of an appropriate equation of motion \checkmark

Where $v^2 = u^2 + 2as$ is correctly stated, condone one error in substitution e.g. sign of a Where other equations are used it must be clear that v can be determined.

Must see v as subject and an attempt to determine t.

 $(v =) 0.35 (m s^{-1}) \checkmark$

2.

Allow more than 2 sf where correct.

5

[14]

(b) Use of $\tan 35 = u_v / 8.8$

Or

Use of $u\cos35$ = 8.8 and u_v = u sin 35

and

6.2 or 6.16 with supporting a calculation ✓

Alternative: credit use of sine rule Must see answer to at least two significant figures

1

2

(c) Use of an appropriate equation of motion ✓ ECF

Condone their incorrect value of u in this substitution. Condone errors in signs in substitution Where other equations are used it must be clear how t can be determined. Must see t as subject and an attempt to determine s.

(t=) 0.63 (s) ✓ ECF

0.61 (s) for use of $u = 6 \text{ m s}^{-1}$ For MP2, where their value of u is used, the answer must be consistent with this value. **Only** allow this use where their value of u, to 1 significant figure, = (5<u<7) m s⁻¹ Condone 1 significant figure answer where U is 1 sig fig.

(d) Use of an appropriate equation of motion \checkmark ECF

Where equation is correctly stated, condone one error in substitution e.g. **one error on sign** of a substituted value **or** one incorrect value substituted (of course, ecf is acceptable)

(h =) 1.9 (m) ✓ ECF

h = 1.83 m for use of $u = 6 \text{ m} \text{ s}^{-1}$ allow ecf on t (check (c)) For MP2, where their value of u is used, the answer must be consistent with this value. **Only** allow this use where their value of u, to 1 significant figure, = (5<u<7) m s⁻¹

allow reverse calculation where u=0 and $v = 6 \text{ m s}^{-1}$

(e) Smooth curve with maximum turning point seen, curve starts at the ball and finishes at X √

> Curve should be approximately parabolic in shape. Curve must start below the label 'golf ball' and ends within 5mm of the ball or the label **X**. Curve must have a maximum turning point.

(f) (Increase the angle to horizontal so) the ball must go higher (and increases its time in the air)

Or

(Increase the angle to horizontal so) the ball must have a greater (initial) vertical velocity \checkmark

(Covers the same horizontal distance over) a longer time in the air (so has a smaller horizontal velocity) \checkmark

Alternative:

Increased angle (to horizontal of projection) so smaller horizontal velocity \checkmark

must be falling towards ground to land at X \checkmark

(Increase the angle to horizontal so that) the vertical velocity greater than the horizontal / increase the vertical decreases the horizontal

2

(a) The centre of mass of the beam and box is at the pivot \checkmark

Idea that moments balance / sum of the moments is zero at this position \checkmark

OR

3.

The anticlockwise moment (of weight of the beam) = clockwise moment (of weight of the box) \checkmark

Links pivot position to a consideration of moments \checkmark

Accept one route or the other, do not accept points from both. Allow max 1 for "the pivot is to the right of the centre (of mass) of the beam" 'pivot' on its own does not get the first mark Award 2 for 1.25 × weight of beam = 1.5 × weight of empty box Confusion of moments with eg work done/forces = max 1

(b) Clockwise moment = 610 × 9.81 × 1.5 (= 8976 N m) ✓

Anticlockwise moment = $250 \times 4 + T \sin 50 \times 4.0 \text{ (N m)} \checkmark$

Use of clockwise = anticlockwise√

Use of $T \sin 50^\circ$ seen / relates vertical component to tension \checkmark

T (= 1994/sin 50°) = 2600 (N) ✓ *Credit any evidence to work out a moment with one mark Condone cos 50 in MP2. Allow ecf for clockwise moment Allow ecf for anticlockwise moment Use of g* = 10 N kg⁻¹ gives 2990 N Omission of 4.0 m (g = 9.8) gives 10410 N. Use of cos 50 (g = 9.8) gives 3100 N *Allow max 4 for use of g* = 10 N kg⁻¹.

(c) $7.5 = \frac{1}{2} g t^2 \checkmark$

(t = 1.2 s)

(calculate distance)

 $s (= ut = 18 \times 1.2) = 22 \text{ (m)} \checkmark$ Allow ecf from incorrect t for MP2

(d) (Range will be greater:)

component of velocity upwards ✓

rock will spend longer in the air \checkmark

greater *t* √

therefore the range is greater ✓

OR

(Range will be smaller)

Counterweight will fall less far before projectile released ✓

Less energy transferred to rock ✓

Initial speed of rock less/horizontal velocity reduced ✓

therefore the range is smaller \checkmark

5

OR

(balanced arguments)

therefore the range is unchanged / answer is indeterminate √
Candidates can argue from both lists to reach a balanced view suggesting that there is no change.
Full credit can be obtained from 2 deductions from one list √ √+ consistent conclusion √
1 deduction from each list √ √+ consistent conclusion √
Do not allow an unsupported conclusion.
Conclusion must be consistent with correct statements.
Treat incorrect statements as neutral.
Do not reward arguments based on a longer time of flight.

MAX 3

3

2

[12]

4.

(a) resultant force = 11 000 × 2.9 = 31900 (N) ✓

resultant force = thrust - air resistance

OR

31 900 = 230 000 - air resistance√

```
198 000 (N) 🗸
```

(b) Air resistance increases with speed so resultant force decreases with speed \checkmark

Eventually air resistance = thrust (so no acceleration) √

(c) Time to reach maximum height = $2.5/9.8=0.255 \text{ s}\checkmark$

maximum height = $1.5 + 4.9 \times 0.255^2 = 1.82 \text{ m}$

Time to reach ground from maximum height = 0.61 s giving total time = 0.87 s \checkmark

OR

 $-1.5 = 2.5t - 0.5 \times 9.8 \times t^2 \checkmark$

rearrange quadratic gives $4.9t^2 - 2.5t - 1.5 = 0$ and

solution
$$t = \frac{2.5 \pm \sqrt{2.5^2 + 4 \times 4.9 \times 1.5}}{2 \times 4.9} \checkmark$$

Giving solutions 0.86 or − 0.35 hence time = 0.86 s**√** Allow credit for alternative routes

	(d)	Starts at 2.5 m s ⁻¹ and maximum height same but reached earlier \checkmark		
		Maximum range no more than 175 m√	2	
	(e)	Motion unchanged vertically / maximum height of P is unchanged: air resistance decelerates P horizontally so less distance travelled. (both points needed) \checkmark		
5.		Air resistance increases with speed: speed is low vertically but very high horizontally (both points needed) \checkmark		
			2	[12]
	(a)	Vertical velocity = 40 sin 30		
		= 20 (m s ⁻¹) ✓	1	
	(b)	Line vertically downward from point X 🗸		
		Ignore labelling unless two or more arrows drawn	1	
	(c)	Method leading to a numerical answer		
		e.g. v = u + at / 0 = 20 − (9.81 × t) gives t = 2.0(4)		
		total time of flight = $4.08 / 4.1$ (s) \checkmark		
		Any alternative acceptable method allowed		
		Need to see one or more dp for final credit	2	
	(d)	Straight line (of positive or negative gradient) \checkmark		
		Starting at 20 ms ⁻¹ (or − 20 ms ⁻¹) √		
		Crossing the x axis at 2.0s approximately ✓ Any single straight line over the 6.0s will score this mark OR ecf from part (a)		
		Any line which crosses at 2.0s (and only here) will score this mark	3	

(e)

Area under graph (between 4s and 6s) 🗸

$$= (20 \times 2) + \frac{1}{2}(20 \times 2) \checkmark$$

= 60 m √

Alternative to use equation of motion selecting

s = ut +
$$\frac{1}{2}$$
 at² ✓
s = (20 × 2) + $\frac{1}{2}$ (9.81 × 2²) ✓

 $s = 59.6 \text{ m} \checkmark$ (values with 56 - 62 acceptable from graph)

(f) **MAX 2**

reaches lower height than $X \checkmark$

at an earlier time \checkmark

hits ground closer to cliff base√

MAX 2

3

[12]