

Refraction

Mark Scheme

Time available: 55 minutes Marks available: 40 marks

Mark schemes

1. (a) As angle of refraction greater than angle of incidence
with
reference to Snell's law
OR
light bends away from normal when it speeds up \checkmark
(Therefore $n_{\mathrm{A}}>n_{\mathrm{B}}$)
(b) Calculation of angle of incidence $=90-43=47$ degrees \checkmark

Use of Snell's law to give angle of refraction $=61(.4)$ degrees \checkmark
(c) Ray reflecting off \mathbf{P} towards 'not to scale' label

Use of $\sin C=1 / n$ to get $C=48$ degrees
OR

Calculation of $i=180-43-61.3=76 \checkmark$
Other calculation and i greater than C therefore tir \checkmark
2. (a) Spreading of pulse / parts of a pulse take different times to travel through the fibre / pulse broadening $\sqrt{ }$

Do not credit material dispersion.
owtte
Due to different paths through the optical fibre / due to entering the optical fibre at different angles \checkmark

Accept a diagram showing different paths.
(b) \quad speed $\left(=\frac{\text { distance }}{\text { time }}\right)=\frac{10 \times 10^{3}}{5.225 \times 10^{-5}} \quad \checkmark\left(=1.91 \times 10^{8}\right)$
(c) Reads off $\operatorname{Sin} \theta_{R}=0.3391$
or
use of $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \sqrt{ }$
Use of $n=\frac{c}{c_{5}}$ seen \checkmark
With their $\operatorname{Sin} \theta_{R}$
(Refractive index of core = 1.47)
Allow use of their refractive index where cs is the subject of the formula
$c s=2.03 \times 10^{8} \checkmark$
Alternative:
Reads off $\operatorname{Sin} \theta_{R}=0.3391$
or
$\theta=19.8^{\circ} \checkmark$
$c_{s} \cos 19.8=1.9 \times 10^{8} \checkmark$
$c_{s}=2.03 \times 10^{8} \checkmark$
Allow finding θ_{R} for their read off
Allow use of their θ_{R}
(d) The refractive index of core for blue light is greater than the refractive index for red / The refractive index of core for red light is less than the refractive index for blue $\sqrt{ }$

Max 1 mark for stating that the refractive indices are different because their speeds are different MP1 can come from graph or prior knowledge

The speed of the blue light is less than the speed of the red light and travel the same distance / The speed of the red light is greater than the speed of the blue light and travel the same distance $\sqrt{ }$
(e) the blue now travels a shorter distance than the red light (compared to (d)) \downarrow

or

the red light now travels a greater distance than the blue light (compared to (d)) \checkmark

or

the difference between the blue's velocity parallel to the central axis and the red's velocity (parallel to the central axis) has decreased (compared to (d)). \checkmark

Allow: now travel different distances whereas previously travelled the same distance.

or

the difference between the horizontal velocity of the red light and the horizontal velocity of the blue light has decreased (compared to (d)). \checkmark
3. (a) Speed $=3.0 \times 10^{8} / 1.47$
$=2.0(4) \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \checkmark$
Do not accept 1 sf answer
(b) Critical angle calculation \checkmark
$\sin C=n_{\text {clad }} / n_{\text {core }}=1.41 / 1.47=0.96$
critical angle $=73.6^{\circ}$
Angle of refraction calculation \checkmark
$r=90-C=16.4^{\circ}$
Do not give MP2 if calculated answer is given as A
Angle of incidence calculation $\checkmark \sin (i)=1.47 \sin (r)$
$i=24.5^{\circ}$
Allow 2 sf answer; allow 24.6°
(c) Correct path of light drawn showing partial reflection and transmission of ray when it encounters the boundary \checkmark

Angle of incidence on core-cladding boundary decreases \checkmark
And will now be less than critical angle \checkmark
(Some light will escape/be refracted into cladding
Some light will continue)
If the diagram is not annotated and no other mark is given, 1 mark can be given for correct description of partial reflection.
4. (a) Max one from: \checkmark
internal ray is a radius (of the block)
OR
internal ray travels along a normal OR
ray meets (glass-air) boundary at 90°
OR
angle of incidence is zero
(so angle of emergence/refraction is zero)
(b) Straight line ruled from centre of protractor through ABC \checkmark
for ${ }_{1} \sqrt{ }$ line must be reasonable and must pass through intersection of the cross-wires and must not pass above the centre of \boldsymbol{A} or below the centre of \boldsymbol{B}

Takes a pair of readings: 24 or 66; and angle consistent with their line \checkmark Must be between 0° and 90°

Use of Snell's Law with their angles \checkmark
1.48 or $1.52 \checkmark$

Must be a positive value to 3 sf.
(c) 1.47 or $1.471 \checkmark$

Reject 1.5 or >4 sf; ignore any unit written
(d) $\quad 0.08(\mathrm{~mm}) \checkmark$

Only acceptable answer
(e) Calculates one percentage uncertainty

For ${ }_{1} \sqrt{ }$ allow ecf from (d); expected answers are
\% uncertainty in $\left(R_{2}-R_{0}\right)=$
$100 \times \frac{0.08}{14.28}=0.56(0) \%$
\% uncertainty in $\left(R_{2}-R_{1}\right)=$ $100 \times \frac{0.08}{9.71}=0.82(4) \%$

OR

Calculates max or min value \checkmark

$$
\begin{aligned}
& n_{\min }=\frac{14.28-0.08}{9.71+0.08}=1.45(0) \\
& n_{\max }=\frac{14.28+0.08}{9.71-0.08}=1.49(1)
\end{aligned}
$$

Adds their percentage uncertainties OR
attempt to use percentage $n=\frac{0.5(\max -\min)}{1.47} \times 100 \checkmark$
Ecf for ${ }_{2} \sqrt{ }$ from wrong percentage uncertainties or wrong max or min values
$1.4(\%) \checkmark$

$$
\text { Condone } 3 \text { or } 4 \text { sf }
$$

5. (a) Use of $n_{\mathrm{A}}=\frac{\mathrm{c}}{c_{\mathrm{A}}}$ to make c_{A} the subject of the equation Condone truncation without appropriate rounding mid-calculation

OR

speed in glass $\mathbf{A}=2.05(2) \times 10^{8} \mathrm{~ms}^{-1}{ }_{1} \checkmark$
Speed in glass $\mathbf{B}=1.985(3) \times 10^{8}$
Condone use of $c=3 \times 10^{8}$
But must see answer to 4 sf answer

OR

their speed in glass $\mathbf{A} \times 0.96748$ (or equivalent) ${ }_{2} \checkmark$
Values obtained using $c=3 \times 10^{8}$:

- speed in glass $A=2.05(3) \times 10^{8} \mathrm{~ms}^{-1}$
- speed in glass $B=1.98(7) \times 10^{8}$
- $n=1.510$

OR

Alternative 1st and 2nd marks
Use of $n_{\mathrm{A}} / n_{\mathrm{B}}=c_{\mathrm{B}} / c_{\mathrm{A}}$ by substitution for $n_{\mathrm{A}} \downarrow$
Use of $n_{\mathrm{A}} / n_{\mathrm{B}}=c_{\mathrm{B}} / c_{\mathrm{A}}$ by substitution for n_{A} and $c_{\mathrm{B}}=c_{\mathrm{A}} \times 0.96748{ }_{2} \checkmark$

OR

$n_{B}=1.461 / 0.96748{ }_{1} \sqrt{ } \sqrt{ } \sqrt{ }$
Watch for maths errors:
Dividing by $1.03252 \neq$ multiplying by 0.96748
Multiplying by $1.03252 \neq$ dividing by 0.96748
1.510 cao to 4 sf only ${ }_{3} \sqrt{ }$

Correct answer to 4 sf obtains all 3 marks
Penalise any unit on final answer

(b) Relationship:

Increase in tension (or stress) in cable produces increase in strain resulting in increase in λ_{R}

OR
Decrease in tension (or stress) causes decrease in strain resulting in decrease in $\lambda_{R} \downarrow$

Variation due to motion:

As the lift accelerates downwards, (the tension is less than the weight in the cable, a decrease in tension results) in λ_{R} decreasing ${ }_{2} \checkmark$

At constant velocity (the tension again equals the weight and) λ_{R} returns to the initial, at rest value ${ }_{3} \checkmark$

Allow a correct comment on the directional relationship between tension, strain and λ_{R} independent of the motion of the lift for first mark
(c) \mathbf{P} because it will produce a larger increase in λ_{R} for the (same) increase in strain
\mathbf{P} because it has a larger gradient (must be a sense of larger increase in λ_{R} for the (same) increase in strain) \checkmark

Hence smaller accelerations (which produce small changes in strain) can produce measurable changes in λ_{B}

OR
Hence gauge \mathbf{P} will have a higher resolution \checkmark
Selecting Q gains zero marks
Linking steeper gradient to being able to withstand a larger force negates this mark
Allow more accurate measurement of acceleration
Allow more readings of acceleration can be taken (over the range)
More sensitive treat as neutral

