

Resistivity

Mark Scheme

Time available: 74 minutes Marks available: 55 marks

1. (a) $x=0.879 \mathrm{~m}_{\checkmark}$ CAO;
read-offs from Figure 2 should be $0.064(\mathrm{~m})$ at \boldsymbol{P} and $0.943(\mathrm{~m})$ at Q
(b) substitution into equation to determine R_{4};
evaluates $\frac{\text { their } R_{4}}{\text { their (a) }}, \checkmark$
evaluates $\frac{\text { correct } R_{4}}{\text { their (a) }} 2 \checkmark$
correct answer 0.15(1) ($\Omega \mathrm{m}^{-1}$) earns both marks
for ${ }_{1} \checkmark$ insist on seeing full substitution; allow POT errors
for ${ }_{2} \sqrt{ }$ use of correct R_{4} (0.13(3));
allow POT error in their x
(c) micrometer screw gauge

OR
digital (vernier) callipers ${ }_{1} \checkmark$
repeat readings at different points (along the wire)
OR
repeat readings in different directions / orientations
OR
repeat readings AND reject / discard anomalies ${ }_{2} \sqrt{ }$
calculate average / mean (from repeated readings) ${ }_{3} \checkmark$
for ${ }_{1} \checkmark$ allow 'micrometer' or 'screw gauge';
allow travelling microscope;
reject '(vernier) callipers'
for ${ }_{3} \checkmark$ some mention of repeat (readings) or wtte must be seen somewhere in body of answer
(d) use of $A=\frac{\pi d^{2}}{4}, \sqrt{ }$

$$
\rho=\text { their }(\mathbf{b}) \times 1.1(3) \times 10^{-7}(\Omega \mathrm{~m})_{2 v}
$$

correct answer (rounding to) $1.7 \times 10^{-8}\left(\Omega \mathrm{~m}^{-1}\right)$ earns both marks for ${ }_{1} \checkmark$ allow POT in d;
either $A=\frac{\pi \times 0.38^{2}}{4}$ OR $A=\pi \times 0.19^{2}$ OR
$A=1.1(3)\left(\times 10^{-7}\right)$ seen
for ${ }_{2} \sqrt{ }$ allow ECF for POT in their (b)
(e) decrease $R_{1} / 2.2 \mathrm{M} \Omega$ by a factor of 30

OR
increase $R_{2} / 3.9 \mathrm{k} \Omega$ by a factor of 30
OR
increase $R_{3} / 75 \Omega$ by a factor of $30 \checkmark$
unless quantitative change identified, must give new resistance, eg
(new) R_{1} is $73.3 / 73 \mathrm{k} \Omega / 7.3 \times 10^{4} \Omega$ etc
(new) R_{2} is $117 / 120 \mathrm{k} \Omega / 1.2 \times 10^{5} \Omega$ etc
(new) R_{3} is $2.25 / 2.3 \mathrm{k} \Omega / 2.3 \times 10^{2} \Omega$ etc
(f) diameter =2.08 OR $2.1(\mathrm{~mm})_{1} \checkmark$
allow >3 sf rounding to 2.08 (mm)
Allow ecf from (b)
2. (a) Use of power equation

OR
Power equation and $V=I R$
To give $R=8.5(\Omega) \checkmark$
(b) Calculation of parallel pair resistance $=5.0 \Omega \checkmark$

Calculation of circuit current $=6.2 / 5.0=1.24 \mathrm{~A}$
$\mathrm{emf}=$ terminal $\mathrm{pd}+I r=6.2+(1.24 \times 2.5) \checkmark$

$9.3 \vee \checkmark$

Allow ecf from (a)
Allow alternative methods
(c) $\quad \mathrm{A}=\pi(d / 2)^{2}=2.84 \times 10^{-8} \checkmark$

Use of resistivity equation $=R A / l \checkmark$
To give $5.0 \times 10^{-8} \checkmark$
Allow POT error in MP1
And MP2
(d) Resistance increases \checkmark

Reduces current through lamp
Lamp dimmer \checkmark
(e) (Resistance increases)

Reduces current in battery \checkmark
Reduces lost volts and increases terminal pd
lamp brighter. \checkmark
Give 1 max for arguments dealing with initial dimming of bulb when wire attached.
3. (a) Use of $P=V$ I or $P=I^{2} R$ or $P=\frac{\mathrm{v}^{2}}{\mathrm{R}} \checkmark$

Use of $\Delta W=P \Delta t \checkmark$
OR
Use of $\Delta Q=I \Delta t \checkmark$
Use of $W=V Q \checkmark$
$2.1 \times 10^{5}(\mathrm{~J}) \checkmark$
2 marks if time not converted to seconds (3600 J)
(b) Use of $\rho=\rho=\frac{R A}{L} \checkmark$
0.91 (m) + appropriate conclusion \checkmark

Allow calculation of R, ρ or A assuming 0.85 m length, and conclusion for second mark:

$$
R=3.5 \Omega
$$

$A=4.6 \times 10^{-6} \mathrm{~m}^{2}$
$\rho=2.1 \times 10^{-5} \Omega \mathrm{~m}$
(c) $350(\Omega) \checkmark$

Full marks for correct answer
Max 3 from: $\checkmark \checkmark \checkmark$
$15(\mathrm{~mA})$ read from graph
Allow 14.5 to 15.5
Conversion to A
pd across resistor $=7.4-2.2=5.2 \mathrm{~V}$
Use of $R=\frac{V}{I}$
Do not allow gradient calculation for R.
4. (a) Length of resistance wire $=50 \times 2 \times 3.14 \times 4 \times 10^{-3}=1.26 \mathrm{~m} \checkmark$

$$
\text { or } 50 \times 3.14 \times 8 \times 10^{-3}
$$

Substitution of data in resistance formula
or $A=\rho L / R$ seen \checkmark
ecf for incorrect length from attempt at a calculation

Area of cross section $=2.1(1) \times 10^{-9}\left(\mathrm{~m}^{2}\right) \checkmark$
(b) Maximum possible pd across $0.25 \mathrm{k} \Omega$ is 9 V Ј
$($ Max power dissipated $)=9^{2} / 250=0.32 \mathrm{~W}$ so resistor is suitable \checkmark

OR

When resistor dissipates maximum power
$V^{2}=0.36 \times 250$ so $\max V=9.5 V \checkmark$
This is higher than the supply pd so this power dissipation so will not be reached \checkmark

OR

Power dissipated when output is $5 V=4^{2} / 250=0.064 \mathrm{~W} \checkmark$
Which is below the max power dissipation of $0.36 \mathrm{~W} \checkmark$

$$
9^{2} / 250=0.32 W \text { with incorrect conclusion scores } 1
$$

Second mark implies the first
$9^{2} / 0.36=225 \Omega$ alone is not a useful calculation in the context. Still need to explain the effect of using the 250Ω
First mark is for a valid useful calculation
(c) Use of potential divider formula to determine resistance of parallel combination \checkmark
$0.313 \mathrm{k} \Omega \checkmark$

Use of equation for resistors in parallel \checkmark
$540 \Omega \checkmark$
Alternative to find resistance of combination
Current in circuit at room temp $=4 / 250=16 \mathrm{~mA} \checkmark$
Resistance of combination $=5 / 16 m A=313 \Omega \checkmark$
OR

$$
\begin{aligned}
& \frac{V_{\text {combination }}}{V_{250}}=\frac{R_{\text {combination }}}{250} \\
& \frac{5}{4}=\frac{R_{\text {combination }}}{250} \\
& R_{\text {combination }}=313 \Omega
\end{aligned}
$$

OR

Current in circuit at room temp $=4 / 250=16 \mathrm{~mA} \checkmark$
Current in thermistor $=5 / 750=6.7 \mathrm{~mA} \checkmark$
Current in $\mathrm{R}=9.3 \mathrm{~mA} \checkmark$
$R=5 / 9.3=540 \Omega \checkmark$
2sf answer \checkmark
(only allowed with some relevant working leading to a resistor value)
(d) Resistance of thermistor decreases \checkmark

Output pd decreases since

resistance of the parallel combination/circuit decreases

OR

lower proportion of pd across the parallel combination (or higher proportion across 250 2)

OR

higher current so greater pd across the 0.25 k resistor \checkmark
Accept correct consequences for R increasing with temperature for 1 mark
5. (a) $0.5 \mathrm{~mm}[0.05 \mathrm{~cm}, 0.0005 \mathrm{~m}] \checkmark$ only acceptable answers
(b) $8.65 \mathrm{~mm}[0.865 \mathrm{~cm}, 0.00865 \mathrm{~m}]{ }_{1} \checkmark$
the micrometer reads zero when the jaws are closed ${ }_{2} \sqrt{ }$ only 3sf answers are acceptable for ${ }_{1} \checkmark$ accept no zero error for ${ }_{2} \checkmark$
(c) $L=(403-289=) 114 \mathrm{~mm} \checkmark$
(d) absolute uncertainty $=1 \mathrm{~mm} \sqrt{ } \checkmark$
percentage uncertainty $=\frac{1}{114} \times 100=0.88 \%{ }_{2} \checkmark$
accept 2 mm for ab. uncertainty ${ }_{1} \checkmark$
allow ecf for wrong L and / or wrong ΔL
accept 1.75\%
(e) should move wire directly over / closer to scale on the ruler to avoid parallax error \checkmark both statement and explanation required for this mark
(f) five values of R / L correct, recorded to 3 sf [last row to 3 sf or 4 sf$]$; accept values in $\Omega \mathrm{cm}^{-1} \checkmark$ mean based on first four rows only; result $9.94 \Omega \mathrm{~m}^{-1}\left[9.94 \times 10^{-2} \Omega \mathrm{~cm}^{-1}\right] \checkmark$

L / cm	R / Ω	$(R / L) \Omega \mathrm{m}^{-1}$
81.6	8.10	9.93
72.2	7.19	9.96
63.7	6.31	9.91
58.7	5.85	9.97
44.1	4.70	$10.66(10.7)$

(g) cross-sectional area $=\frac{\pi d^{2}}{4}{ }_{1} \checkmark$
resistivity from $\frac{R}{L} \times A$, correct substitution of result from $01.6_{2} \checkmark$
$1.10 \times 10^{-6} \checkmark$
$\Omega \mathrm{m}_{4} \checkmark$
resistivity from $\frac{R}{L} \times \frac{\pi d^{2}}{4}$ earns ${ }_{12} \sqrt{ } \checkmark$
allow $_{2} \checkmark$ if $\frac{R}{L}$ value is not based on mean or on a mean from all five rows of table in 01.6
condone 1.12×10^{-6} for ${ }_{3} \checkmark$ if fifth row in 01.6 was not rejected withhold ${ }_{3} \checkmark$ for POT error

