

A-Level Physics

Resistivity

Mark Scheme

Time available: 74 minutes Marks available: 55 marks

www.accesstuition.com

Mark schemes

1.

(a) x = 0.879 m √
 CAO;
 read-offs from Figure 2 should be 0.064 (m) at P and 0.943 (m) at Q

(b) substitution into equation to determine R_4 ;

evaluates
$$\frac{\text{their } R_4}{\text{their } (a)^1} \checkmark$$

evaluates
$$\frac{\text{correct } R_4}{\text{their (a)}} {}_2 \checkmark$$

correct answer 0.15(1) (Ωm^{-1}) earns both marks for ${}_{1}\checkmark$ insist on seeing full substitution; allow POT errors for ${}_{2}\checkmark$ use of correct R_{4} (0.13(3)); allow POT error in their x

(c) micrometer screw gauge

OR

digital (vernier) callipers 1√

repeat readings at different points (along the wire)

OR

repeat readings in different directions / orientations

OR

repeat readings AND reject / discard anomalies 2√

calculate average / mean (from repeated readings) $_{3}\mathbf{\checkmark}$

for ${}_{1}\checkmark$ allow 'micrometer' or 'screw gauge'; allow travelling microscope; reject '(vernier) callipers' for ${}_{3}\checkmark$ some mention of <u>repeat</u> (readings) or wtte must be seen somewhere in body of answer

3

1

(d) use of
$$A = \frac{\pi d^2}{4} \sqrt{\frac{1}{4}}$$

 ρ = their (b) × 1.1(3) × 10⁻⁷ (Ω m) ₂

correct answer (rounding to) $1.7 \times 10^{-8} (\Omega \text{ m}^{-1})$ earns both marks for $_1\checkmark$ allow POT in d; either $A = \frac{\pi \times 0.38^2}{4} \text{ OR } A = \pi \times 0.19^2 \text{ OR}$ $A = 1.1(3) (\times 10^{-7})$ seen for $_2\checkmark$ allow ECF for POT in their (b)

(e) decrease R_1 / 2.2 M Ω by a factor of 30

OR

increase R_2 / 3.9 k Ω by a factor of 30

OR

increase $R_3 / 75 \Omega$ by a factor of 30 \checkmark unless quantitative change identified, must give new resistance, eg (new) R_1 is 73.3 / 73 k Ω / 7.3 × 10⁴ Ω etc (new) R_2 is 117 / 120 k Ω / 1.2 × 10⁵ Ω etc (new) R_3 is 2.25 / 2.3 k Ω / 2.3 × 10² Ω etc

(f) diameter = 2.08 OR 2.1 (mm) $_1 \checkmark$ allow > 3 sf rounding to 2.08 (mm) Allow ecf from (b)

2.

(a)

Use of power equation

OR

Power equation and V = IR

To give $R = 8.5 (\Omega) \checkmark$

2

1

1

1

[10]

	(b)	Calculation of parallel pair resistance = 5.0 Ω \checkmark	
		Calculation of circuit current = $6.2 / 5.0 = 1.24 \text{ A}$	
		emf = terminal pd + Ir = 6.2 + (1.24 × 2.5) \checkmark	
		9.3 V 🗸	
		Allow ecf from (a)	
		Allow alternative methods	3
	(c)	A = $\pi (d/2)^2 = 2.84 \times 10^{-8} \checkmark$	
		Use of resistivity equation = $RA/l \checkmark$	
		To give 5.0 × 10 ^{−8} √	
		Allow POT error in MP1	
		And MP2	3
	(d)	Resistance increases 🗸	
		Reduces current through lamp	
		Lamp dimmer 🗸	2
	(e)	(Resistance increases)	2
		Reduces current in battery \checkmark	
		Reduces lost volts and increases terminal pd	
		lamp brighter. 🗸	
		Give 1 max for arguments dealing with initial dimming of bulb when wire attached.	
			2
3.	(a)	Use of $P = VI$ or $P = I^2 R$ or $P = \frac{V^2}{R} \checkmark$	
		Use of $\Delta W=P\Delta t \checkmark$	
		OR	
		Use of $\Delta Q = I \Delta t \checkmark$	
		Use of <i>W</i> = <i>VQ</i> ✓	
		2.1 × 10 ⁵ (J) ✓	
		2 marks if time not converted to seconds (3600 J)	3
		www.accesstuition.com	3

[11]

(b) Use of
$$\rho = \rho = \frac{RA}{L} \checkmark$$

0.91 (m) + appropriate conclusion \checkmark

Allow calculation of R, ρ or A assuming 0.85 m length, and conclusion for second mark:

$$R = 3.5 \Omega$$

 $A = 4.6 \times 10^{-6} m^2$
 $\rho = 2.1 \times 10^{-5} \Omega m$

(c) 350 (Ω) **√**

4.

Full marks for correct answer

	Max 3 from: 🗸 🗸 🗸		
	15 (mA) read from graph Allow 14.5 to 15.5		
	Conversion to A		
	pd across resistor = $7.4 - 2.2 = 5.2$ V		
	Use of $R = \frac{V}{I}$		
	Do not allow gradient calculation for R.	4	
		•	[9]
(a)	Length of resistance wire = $50 \times 2 \times 3.14 \times 4 \times 10^{-3} = 1.26 \text{ m} \checkmark$		
	or $50 \times 3.14 \times 8 \times 10^{-3}$	1	
	Substitution of data in resistance formula		
	or $A = \rho L/R$ seen \checkmark		
	ecf for incorrect length from attempt at a calculation	1	
	Area of cross section = 2.1(1) × 10^{-9} (m ²) \checkmark		
		1	
(b)	Maximum possible pd across 0.25 k Ω is 9 V \checkmark	1	
	(Max power dissipated) = $9^2/250 = 0.32$ W so resistor is suitable \checkmark		
		1	

When resistor dissipates maximum power

 $V^2 = 0.36 \times 250$ so max $V = 9.5 V \checkmark$

This is higher than the supply pd so this power dissipation so will not be reached \checkmark

OR

Power dissipated when output is 5 V = $4^2/250 = 0.064 \text{ W} \checkmark$

Which is below the max power dissipation of 0.36 W \checkmark

 $9^2/250 = 0.32$ W with incorrect conclusion scores 1 Second mark implies the first $9^2/0.36 = 225 \Omega$ alone is not a useful calculation in the context. Still need to explain the effect of using the 250 Ω First mark is for a valid useful calculation

(c) Use of potential divider formula to determine resistance of parallel combination \checkmark

0.313 kΩ √

Use of equation for resistors in parallel \checkmark

540 Ω 🗸

Alternative to find resistance of combination Current in circuit at room temp = $4/250 = 16 \text{ mA } \checkmark$ Resistance of combination = $5/16\text{mA} = 313 \Omega \checkmark$ OR $\frac{V_{combination}}{V_{250}} = \frac{R_{combination}}{250}$ $\frac{5}{4} = \frac{R_{combination}}{250}$ $R_{combination} = 313 \Omega$

OR

Current in circuit at room temp = $4/250 = 16 \text{ mA} \checkmark$

Current in thermistor = $5/750 = 6.7 \text{ mA} \checkmark$

Current in R = 9.3 mA ✓

R = 5/9.3 = 540 Ω ✓

2sf answer 🗸

(only allowed with some relevant working leading to a resistor value)

Max 5

(d) Resistance of <u>thermistor</u> decreases ✓

Output pd decreases since

resistance of the parallel combination /circuit decreases

OR

lower proportion of pd across the parallel combination (or higher proportion across 250Ω)

OR

5.

	higher current so greater pd across the 0.25 k resistor \checkmark Accept correct consequences for R increasing with temperature for 1 mark		
		1	[12]
(a)	0.5 mm [0.05 cm, 0.0005 m]	1	
(b)	8.65 mm [0.865 cm, 0.00865 m] ₁✔		
	the micrometer reads zero when the jaws are closed $_2\checkmark$ only 3sf answers are acceptable for $_1\checkmark$ accept no <u>zero</u> error for $_2\checkmark$	2	
(c)	L = (403 − 289 =) 114 mm	1	
(d)	absolute uncertainty = 1 mm $_1 \checkmark$		
	percentage uncertainty = $\frac{1}{114} \times 100 = 0.88\%_2 \checkmark$		

accept 2 mm for ab. uncertainty $_{1}\checkmark$ allow ecf for wrong L and / or wrong \varDelta L accept 1.75%

(e) should move wire directly over / closer to scale on the ruler to avoid <u>parallax</u> error ✓ both statement and explanation required for this mark 2

1

(f) five values of *R/L* correct, recorded to 3 sf [last row to 3sf or 4sf]; accept values in Ω cm⁻¹ \checkmark mean based on first four rows only; result 9.94 Ω m⁻¹ [9.94 × 10⁻² Ω cm⁻¹] \checkmark

<i>L</i> /cm	R/Ω	$(R/L)\Omega$ m ⁻¹
81.6	8.10	9.93
72.2	7.19	9.96
63.7	6.31	9.91
58.7	5.85	9.97
44.1	4.70	10.66 (10.7)

(g) cross-sectional area =
$$\frac{\pi a^2}{4} \sqrt{1}$$

resistivity from $\frac{R}{L} \times A$, correct substitution of result from 01.6 $_2 \checkmark$

1.10 × 10⁻⁶₃ ✓

 $\Omega \text{ m }_4 \checkmark$

resistivity from $\frac{R}{L} \times \frac{\pi d^2}{4}$ earns $_{12}\sqrt{4}$ allow $_2\sqrt{}$ if $\frac{R}{L}$ value is not based on mean or on a mean from all five rows of table in 01.6 condone 1.12 \times 10⁻⁶ for $_3\sqrt{}$ if fifth row in 01.6 was not rejected withhold $_3\sqrt{}$ for POT error

4 [13]