

A-Level Physics

Reversed Heat Engine

Mark Scheme

Time available: 44 minutes Marks available: 32 marks

www.accesstuition.com

Mark schemes

- 1.
- (a) $Q_C = Q_H W = 65 28 = 37 W \checkmark_1$

COPref = $37/28 = 1.32 \checkmark_2$

COPref for ideal refrigerator = $278/(308 - 278) = 9.3 \checkmark_3$

If temperatures not changed to K, do not award marks \checkmark_3 and \checkmark_4 Condone consistent use of Celsius in the denominator.

Actual COP is very low compared to ideal so claim is valid \checkmark_4

No ECF for \checkmark_4 from incorrect values of COP, unless from arithmetic error.

(b) • One factor from \checkmark_1

- Thermoelectric cooler is small/convenient/of simple construction/(highly) portable
- can run off batteries/solar panel
- has no moving parts
- requires low maintenance
- no risk of leaking fluids
- temperature is about 5 °C, not cooler
- low energy/power consumption (28W)

 \checkmark_1 for advantage from bullet point list

For \checkmark_1 accept application, eg use in hot countries, by campers, climbers, walkers etc.

For \checkmark_2

- convenience outweighs poor COP
- any COP >1 means cooling power > power supplied
- waste of electrical energy from having low COP is acceptable

 \checkmark_2 mark for relating answer to COP

2

[6]

2.

(a) The efficiency is 50% when the kelvin temperature of the hot source is twice the kelvin temperature of the cold sink. \checkmark

(b) Identifies $Q_H = 3 \times W$ and $Q_C = Q_H - W \checkmark$

In reverse $COP_{ref} = QC / W$

Leading to $COP_{ref} = 2 \checkmark$

MP1 can be awarded for

$$Q_H - Q_C = 0.33Q_H \text{ or } Q_C = 0.67Q_H$$

Give credit for substituting numbers in equations eg

$$W = 1 Q_H = 3, Q = 2$$

$$OR W = 33 Q_H = 100, Q_C = 67$$

Accept working shown on a diagram

Accept working using temperatures $T_H T_C$ with numbers substituted eg $T_H = 300$ (K), $T_C = 200$ (K)

No credit for simply quoting formulae from Formulae Booklet.

[3]

3. (a) Tick against answer B ✓

1

2

(b) COPref =
$$\frac{272}{343 \ 272}$$
 (= 3.8 (3.83)) \checkmark

$$3.8 = Q_C/(100 - Q_C)$$
 giving $Q_C = 79$ (W) (79.3W) \checkmark

$$P_{IN} = 79/3.8 = 21 \text{ (W) } (20.7 \text{ W) } \checkmark$$

OR for 2nd and 3rd marks

COPref =
$$Q_C/W$$
 and $Q_C + W = Q_H = 100 \checkmark$

$$3.8 W + W = 100$$

So
$$W = 21 (W) \checkmark$$

OR for 2nd and 3rd marks

$$W = Q_H/4.8 = 100/4.8 = 21 (W) \checkmark$$

[4]

3

4.

(a) The ratio <u>energy given to hot space/area to be heated</u> ✓

work input

OR COP = Q_{IN} / W with Q_{IN} and W explained / defined \checkmark

It must be clear that Q_{IN} is energy delivered <u>to the area to be</u> <u>heated / hot space</u>. Do not accept 'heat input' or any wording that is vague

(b) (i)
$$\eta_{\text{max}} = \frac{1600 - 290}{1600} = 0.82 / 82\%$$
 \checkmark

$$1600$$
input power = $\frac{\text{output power}}{\text{efficiency}} = \frac{80}{0.82} = 98 \text{ kW}$ \checkmark
fuel flow rate × CV = 98 kW
fuel flow rate = $98000 / (49 \times 10^6) = 2.0 \times 10^{-3}$ \checkmark
kg s⁻¹ \checkmark
OR 7.2 \checkmark kg h⁻¹ \checkmark
If first 2 steps in calculation are not seen and 80 kW

If first 2 steps in calculation are not seen and 80 kW used for input power give 1 mark for:

fuel flow rate = $80000 / (49 \times 10^6) = 1.6 \times 10^{-3}$ The unit mark is an independent mark

(ii) $COP_{HP} = Q_2$ WSo $Q_2 = 16 \times 2.6 = 41.6$ or 42 kW \checkmark $Q_1 = 98 - 80 = 18 \text{ kW}$ \checkmark Total $Q_1 + Q_2 = 60 \text{ kW}$ \checkmark $CE \text{ for } Q_1 \text{ if incorrect input power from i is used, but NOT 80 -16 or } 80 - 80$

(iii) Heat pump delivers more heat energy than the electrical energy input \checkmark

Reason: it <u>adds</u> energy from external source to electrical energy input \checkmark Accept $Q_{IN} = W + Q_{OUT}$ if explained correctly e.g. by diagram

[10]

(a) (A device in which) an input of work ✓

5.

(causes) heat to transfer from a cold space / reservoir to a hot space / reservoir ✓

www.accesstuition.com

3

2

(b) Heat transfer to hot space equals work done plus heat transfer from cold space / $Q_{IN} = W + Q_{OUT}$

Either written statement or expressed in symbols

so Q_{IN} (is always) > Q_{OUT} reason must be seen ✓

$$COP_{\mathrm{HP}} = \frac{\mathrm{Q_{IN}}}{W} \text{ and } COP_{\mathrm{REF}} = \frac{\mathrm{Q_{OUT}}}{W}$$

The COP formulae are in formulae booklet so no marks for simply quoting them. i.e 2nd mark cannot be awarded without first mark.

OR

$$Q_{IN} = W + Q_{OUT}$$
 \checkmark

$$COP_{\mathsf{HP}} \times W = + COP_{\mathsf{REF}} \times W \text{ or } COP_{\mathsf{HP}} = \frac{Q_{\mathsf{IN}}}{W} = \frac{W + Q_{\mathsf{OUT}}}{W}$$

So
$$COP_{HP} = 1 + COP_{REF}$$

[4]

2

6. (a) (refrigerator operates between a cold space and a hot space)

 Q_{out} is the energy removed from the fridge contents (or from the cold space) (1)

 $Q_{\rm in}$ is the energy given to the surroundings (or to outside the fridge/hot space) (1)

2

(b) (i) power for cooling ice = $5.5 \times (420 \times 10^3)/3600 = 642 \text{ W}$ (1)

$$P_{\rm in} = 642/4.5 = 142 \text{ W}$$
 (1)

or energy taken from ice in 1 hour = $5.5 \times 420 \times 10^3 = 2310 \text{ kJ}$

$$W_{\rm in} = 2310/4.5 = 513 \text{ kJ}$$
 (1)

$$P_{\rm in} = \frac{513 \times 10^3}{3600} = 142 \,\rm W$$
 (1)

(ii)
$$Q \text{ per s} = 142 + 642$$

= 784 W (give CE) (1)
or $Q_{in} = Q_{out} + W_{in} = 513 \text{ kJ} + 2310 \text{ kJ} = 2820 \text{ kJ}$
 $Q_{in} \text{ per s} = \frac{2820 \times 10^3}{3600} = 784 \text{ W (1)}$

[5]