
 Reversed Heat Engine

Mark Scheme

Time available: 44 minutes Marks available: $\mathbf{3 2}$ marks

1. (a) $Q_{\mathrm{C}}=Q_{\mathrm{H}}-W=65-28=37 W \checkmark_{1}$

COPref $=37 / 28=1.32 \sqrt{2}^{2}$
COPref for ideal refrigerator $=278 /(308-278)=9.3 \sqrt{3}$
If temperatures not changed to K, do not award marks $\sqrt{3}$ and $\sqrt{4}$
Condone consistent use of Celsius in the denominator.
Actual COP is very low compared to ideal so claim is valid \checkmark_{4}
No ECF for \checkmark_{4} from incorrect values of COP, unless from arithmetic error.
(b) • One factor from \checkmark_{1}

- Thermoelectric cooler is small/convenient/of simple construction/(highly) portable
- can run off batteries/solar panel
- has no moving parts
- requires low maintenance
- no risk of leaking fluids
- temperature is about $5^{\circ} \mathrm{C}$, not cooler
- low energy/power consumption (28W)
\checkmark_{1} for advantage from bullet point list
For \checkmark_{1} accept application, eg use in hot countries, by campers, climbers, walkers etc.

For \mathfrak{V}_{2}

- convenience outweighs poor COP
- any COP >1 means cooling power > power supplied
- waste of electrical energy from having low COP is acceptable
$\checkmark{ }_{2}$ mark for relating answer to COP

2. (a) The efficiency is 50% when the kelvin temperature of the hot source is twice the kelvin temperature of the cold sink. \checkmark
(b) Identifies $Q_{\mathrm{H}}=3 \times W$ and $Q_{\mathrm{C}}=Q_{\mathrm{H}}-W \checkmark$

In reverse $C O P_{\text {ref }}=Q C / W$
Leading to $C O P_{\text {ref }}=2 \checkmark$
MP1 can be awarded for
$Q_{H}-Q_{C}=0.33 Q_{H}$ or $Q_{C}=0.67 Q_{H}$
Give credit for substituting numbers in equations eg
$W=1 Q_{H}=3, Q=2$
$O R W=33 Q_{H}=100, Q_{C}=67$
Accept working shown on a diagram
Accept working using temperatures $T_{H} T_{C}$ with numbers substituted eg $T_{H}=300(K), T_{C}=200(K)$
No credit for simply quoting formulae from Formulae Booklet.
3. (a) Tick against answer B \checkmark
(b) \quad COPref $=\frac{272}{343272}(=3.8(3.83)) \checkmark$
$3.8=Q_{\mathrm{C}} /\left(100-Q_{\mathrm{C}}\right)$ giving $Q_{\mathrm{C}}=79(\mathrm{~W})(79.3 \mathrm{~W}) \checkmark$
$P_{\text {IN }}=79 / 3.8=21(\mathrm{~W})(20.7 \mathrm{~W}) \checkmark$
OR for 2nd and 3rd marks
COPref $=Q_{\mathrm{C}} / W$ and $Q_{\mathrm{C}}+W=Q_{\mathrm{H}}=100 \checkmark$
3.8 $W+W=100$

So $W=21(W) \checkmark$
OR for 2nd and 3rd marks
COPhp = COPref $+1 \checkmark$
$\mathrm{W}=Q_{H} / 4.8=100 / 4.8=21(\mathrm{~W}) \checkmark$
4.
(a) The ratio energy given to hot space/area to be heated \checkmark work input

OR COP $=Q_{\mathbb{I N}} / W$ with $Q_{\mathbb{N}}$ and W explained $/$ defined \checkmark It must be clear that $Q_{I N}$ is energy delivered to the area to be heated / hot space. Do not accept 'heat input' or any wording that is vague
(b) (i) $\eta_{\max }=\frac{1600-290}{1600}=0.82 / 82 \%$
input power $=\frac{\text { output power }}{\text { efficiency }}=\frac{80}{0.82}=98 \mathrm{~kW}$
fuel flow rate $\times \mathrm{CV}=98 \mathrm{~kW}$
fuel flow rate $=98000 /\left(49 \times 10^{6}\right)=2.0 \times 10^{-3}$
$\mathrm{kg} \mathrm{s}^{-1} \quad \checkmark$
OR $7.2 \quad \checkmark \quad \mathrm{~kg} \mathrm{~h}^{-1} \quad \checkmark$
If first 2 steps in calculation are not seen and 80 kW used for input power give 1 mark for:
fuel flow rate $=80000 /\left(49 \times 10^{6}\right)=1.6 \times 10^{-3}$
The unit mark is an independent mark
(ii) $\quad C O P_{\mathrm{HP}}=\frac{Q_{2}}{W}$

So $Q_{2}=16 \times 2.6=41.6$ or $42 \mathrm{~kW} \quad \checkmark$
$Q_{1}=98-80=18 \mathrm{~kW}$
Total $Q_{1}+Q_{2}=60 \mathrm{~kW}$
CE for Q_{1} if incorrect input power from i is used, but NOT 80-16 or 80-80
(iii) Heat pump delivers more heat energy than the electrical energy input \checkmark

Reason: it adds energy from external source to electrical energy input \checkmark
Accept $Q_{I N}=W+Q_{\text {OUT }}$ if explained correctly e.g. by diagram
5. (a) (A device in which) an input of work \checkmark
(causes) heat to transfer from a cold space / reservoir to a hot space / reservoir \checkmark
(b) Heat transfer to hot space equals work done plus heat transfer from cold space / $Q_{\text {IN }}=W+Q_{\text {out }}$

Either written statement or expressed in symbols
so $Q_{\text {IN }}$ (is always) $>Q_{\text {OUT }}$ reason must be seen \checkmark
$C O P_{\mathrm{HP}}=\frac{\mathrm{Q}_{\mathrm{IN}}}{W}$ and $C O P_{\mathrm{REF}}=\frac{\mathrm{Q}_{\mathrm{OUT}}}{W}$
So $C O P_{\mathrm{HP}}>C O P_{\mathrm{REF}} \checkmark$
The COP formulae are in formulae booklet so no marks for simply quoting them. i.e $2^{\text {nd }}$ mark cannot be awarded without first mark.

OR

$Q_{\text {IN }}=W+Q_{\text {OUT }} \checkmark$
$C O P_{\mathrm{HP}} \times W=+C O P_{\mathrm{REF}} \times W$ or $C O P_{\mathrm{HP}}=\frac{Q_{I \mathrm{~N}}}{W}=\frac{W+Q_{\text {OUT }}}{W}$
So $C O P_{H P}=1+C O P_{\text {REF }}$
So $C O P_{H P}>C O P_{\text {REF }} \quad \checkmark$
6. (a) (refrigerator operates between a cold space and a hot space)
$Q_{\text {out }}$ is the energy removed from the fridge contents (or from the cold space) (1)
$Q_{\text {in }}$ is the energy given to the surroundings (or to outside the fridge/hot space) (1)
(b) (i) power for cooling ice $=5.5 \times\left(420 \times 10^{3}\right) / 3600=642 \mathrm{~W}$ (1)

$$
P_{\text {in }}=642 / 4.5=142 \mathrm{~W}(1)
$$

or energy taken from ice in 1 hour $=5.5 \times 420 \times 10^{3}=2310 \mathrm{~kJ}$

$$
\begin{aligned}
& W_{\text {in }}=2310 / 4.5=513 \mathrm{~kJ}(1) \\
& P_{\text {in }}=\frac{513 \times 10^{3}}{3600}=142 \mathrm{~W}(1)
\end{aligned}
$$

(ii) Q per s $=142+642$
$=784 \mathrm{~W}$ (give CE) (1)
or $Q_{\text {in }}=Q_{\text {out }}+W_{\text {in }}=513 \mathrm{~kJ}+2310 \mathrm{~kJ}=2820 \mathrm{~kJ}$
$Q_{\text {in }}$ per $s=\frac{2820 \times 10^{3}}{3600}=784 \mathrm{~W}(1)$

