Access A-Level Physics

Rotational Kinetic Energy

Mark Scheme

Time available: 66 minutes Marks available: $\mathbf{3 6}$ marks

Mark schemes

1. (a) Equates initial E_{p} to linear E_{k} and rotational $E_{k} \checkmark$

Substitutes values and uses $V=r \omega \checkmark$
Calculates V to give $0.51 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$
$9.2 \times 10^{-2} \times 9.81 \times 0.5=\left(1 / 2 \times 9.2 \times 10^{-2} V^{2}\right)+(1 / 2 \times$
$\left.8.6 \times 10^{-5} \times \frac{V^{2}}{0.005^{2}}\right)$
$V=0.51 \mathrm{~m} \mathrm{~s}^{-1}$
Some substitution of data must be seen for MP2
Do not allow MP3 for no consideration of linear E_{k}
Give 1 mark if $m g h=1 / 2 I \omega^{2}$ used with
answer $0.51 \mathrm{~m} \mathrm{~s}^{-1}$
(b) Calculates α from $\alpha=T / I \checkmark$

Attempts to use any appropriate equation(s) of motion (for angular motion) \checkmark
Substitutes into equation(s) of motion and calculates $\theta \checkmark$

$$
\alpha=\left(8.3 \times 10^{-4}\right) / 8.6 \times 10^{-5}=9.65 \mathrm{rad} \mathrm{~s}^{-2}
$$

or $9.7 \mathrm{rad} \mathrm{s}^{-2}$
$\theta=145 \times 10-1 / 2 \times 9.7 \times 10^{2}=967 \mathrm{rad}$ or 970 rad
MP2: $\omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta$ is not enough on its own as there are two unknowns.

MP2: Quoting appropriate formula(e) is not enough. There must be some attempt at substituting the data.
2. (a) $2.9 \mathrm{rev} \mathrm{s}^{-1}$ equivalent $=2 \pi \times 2.9 \mathrm{rad} \mathrm{s}^{-1}=8.2 \mathrm{rad} \mathrm{s}^{-1}$

OR $I=2 E_{\mathrm{k}} / \omega^{2}$
OR correct substitution in $E_{\mathrm{k}}=1 / 2 I \omega^{2} \checkmark$
leading to $I=6.2 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{2} \checkmark$
1st mark for correct conversion rev s ${ }^{-1}$ OR rearranging energy equation in terms of I OR correct substitution in $E_{k}=1 / 2 I \omega^{2}$
2nd mark for correct answer.
Do not allow final answer to 1 sig fig e.g. 0.06
(b) I depends on how mass is distributed about axis (of rotation)

For arms, screw and punch same mass is/point masses are closer to axis than the steel balls (making M of I lower) \checkmark
I depends on r^{2} so I changes greatly for small change in in $r \checkmark$
Allow 'other parts' or 'other components' if it is clear this means screw, punch and arms
(c) $\quad \alpha=\frac{2 \times \pi \times(0-2.9)}{0.089}=-205 \mathrm{rad} \mathrm{s}^{-2} \checkmark$

Attempt to use $\omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta$ or $\theta=\omega 1 \mathrm{t}+1 / 2 \alpha \mathrm{t}^{2}$
or $\theta=1 / 2\left(\omega_{1}+\omega_{2}\right) t \checkmark$
giving $\theta=0.81 \mathrm{rad} \checkmark$
Condone missing sign or α given as positive Accept 200 rad s ${ }^{-2}$ If α positive, 2nd mark for attempt to use
$\omega_{2}^{2}=\omega_{1}{ }^{2}-2 \alpha \theta$ or $\theta=\omega_{1} t-1 / 2 \alpha t^{2}$
or $\theta=1 / 2\left(\omega_{1}+\omega_{2}\right) t \checkmark$
ECF for value of ω used in (a)
(d) $\quad\left(I=2 m r^{2}\right.$ and $\left.E_{\mathrm{k}}=1 / 2 I \omega 2\right)$

Increasing y by 15% gives new $I=1.15^{2} \times$ original I (or 1.32) \checkmark
Increasing R by 15% increases I by 1.15^{3} (or 1.52) \checkmark
Second option gives greater increase in I, and E_{k} also increased (by same ratio). \checkmark Accept answers without calculation:
I prop to $y^{2} \checkmark$
I prop to $R^{3} \checkmark$
For same \% increase in y or R, I and hence E_{k} increases more by increasing $R \checkmark$
Note: $E_{k}=m r^{2} \omega^{2}=4 / 3 \pi R^{3} \rho r^{2} \omega^{2}$ for each ball
(e) $\sqrt{ }$ against Nm s
3. (a)

	Place a tick or ticks in this column
The moment of inertia will decrease	
The angular velocity will decrease	\checkmark
The angular momentum will be unaltered	\checkmark

(b) Flywheel acts as store of energy \checkmark

Able to deliver large amount of E_{K} in short time \checkmark
Without flywheel motor would stall during stamping (as load torque excessively high) \checkmark
(c) Converts rev min${ }^{-1}$ to $\mathrm{rad} \mathrm{s}^{-1}: 67.0$ and $37.7 \mathrm{rad} \mathrm{s}^{-1} \checkmark$

$$
E_{\mathrm{K}}=\frac{1}{2} \times 25 \times\left(67.0^{2}-37.7^{2}\right)=3.83 \times 10^{4} \mathrm{~J} \checkmark
$$

(d) $\quad \alpha=\left(\omega_{2}-\omega_{1}\right) / t$

$$
=(67.0-37.7) / 5.0=5.86 \mathrm{rad} \mathrm{~s}^{-2} \checkmark
$$

$T=l \alpha$

$$
\text { If }(67-0) / 5.0 \text { used, leading to } T=335 \text { give } 1 \text { mark }
$$ Allow approach using angular displacement θ and

OR $P=T \times \omega_{\mathrm{AVE}}=147 \times 52.4=7.7 \mathrm{~kW} \checkmark$ $\max 2$

1

$$
=25 \times 5.86=147 \checkmark
$$ change in energy

θ
(e) $\mathrm{P}=\Delta \mathrm{E}_{\mathrm{K}} / t=7.7 \mathrm{~kW} \checkmark$

Allow CE from 01.4
(f) For smaller speed variation, greater I required \checkmark
I proportional to $\rho t r^{4} \quad\left(I=\frac{1}{2} \pi r^{2} t \rho r^{2}\right) \checkmark$
Shows that greatest $\rho t r^{4}$ is for flywheel B \checkmark (hence B)
OR discusses qualitatively:

A has smaller r but compensated for by greater t and ρ (hence greater m) \checkmark
B has smaller mass because of low ρ and t but much greater r
r is squared twice \checkmark

$$
m_{A}=498 \mathrm{~kg}, m_{B}=228 \mathrm{~kg}
$$

i.e. m_{A} roughly $2 \times m_{b}$
but r_{B}^{2} is roughly $3 \times r_{A}{ }^{2}$
hence $I_{B}>I_{A}$
4. (a) (Gravitational potential energy of falling mass) is converted to linear/translational ke of mass and rotational ke of wheel \checkmark
(b) (Use of $\left.m g h=1 / 2 m v^{2}+1 / 2 l \omega^{2}+T \theta\right)$

$$
m g h=2.94 \mathrm{~J}
$$

$(0.200 \times 9.81 \times 1.50)=\left(0.5 \times 0.200 \times 2.22^{2}\right)+\left(0.5 \times I \times 6.73^{2}\right)$

$$
1 / 2 m v^{2}=0.493 \mathrm{~J}
$$

$$
+\left(7.5 \times 10^{-3} \times 4.55\right)
$$

$$
T \theta=0.0728 \mathrm{~J}
$$

E_{P} or E_{K} correct \checkmark
If friction torque not worked out out, give up to max 2 marks. Give full marks if friction torque worked out and stated as negligible.

All E_{P}, E_{K} and $T \theta$ correct \checkmark

Leading to $I=2.41(3) / 22.6 \checkmark\left(=0.107 \mathrm{~kg} \mathrm{~m}^{2}\right)$
Gives
$I=0.108 \mathrm{~kg} \mathrm{~m}^{2}$
(c) $\quad \alpha=T / I=7.5 \times 10^{-3} / 0.107=0.0701 \mathrm{rad} \mathrm{s}^{-2} \checkmark$
substitution of $\omega_{2}=0, \omega_{1}=6.73$ and α into $\omega_{2}{ }^{2}=\omega_{1}{ }^{2}-2 \alpha \theta$
leading to $\theta=323 \mathrm{rad} \checkmark$
OR
$1 / 21 \omega^{2}=T \theta \quad 0.5 \times 0.107 \times 6.73^{2}=7.5 \times 10^{-3} \theta \checkmark$
$\theta=323 \mathrm{rad} \checkmark$
Give CE if
$I=0.108 \mathrm{~kg} \mathrm{~m}^{2}$ used

