

A-Level Physics

Rotational Kinetic Energy

Mark Scheme

Time available: 66 minutes Marks available: 36 marks

www.accesstuition.com

Mark schemes

- 1.
- (a) Equates initial E_p to linear E_k and rotational E_k \checkmark

Substitutes values and uses $V = r\omega$ \checkmark

Calculates V to give 0.51 m s⁻¹ \checkmark

$$9.2\times 10^{-2}\times 9.81\times 0.5 = (\%\times 9.2\times 10^{-2}\ V^2) + (\%\times 9.2\times 10^{-2}\$$

$$8.6 \times 10^{-5} \times \frac{v^2}{0.005^2}$$

$$V = 0.51 \text{ m s}^{-1}$$

Some substitution of data must be seen for MP2

Do not allow MP3 for no consideration of linear E_k

Give 1 mark if $mgh = \frac{1}{2}I\omega^2$ used with

answer 0.51 m s⁻¹

(b) Calculates α from $\alpha = T/I \checkmark$

Attempts to use any appropriate equation(s) of motion (for angular motion) ✓

Substitutes into equation(s) of motion and calculates θ \checkmark

$$\alpha = (8.3 \times 10^{-4})/8.6 \times 10^{-5} = 9.65 \text{ rad s}^{-2}$$

$$\theta$$
 = 145 × 10 - $\frac{1}{2}$ × 9.7 × 10² = 967 rad or 970 rad

MP2: $\omega_2^2 = \omega_1^2 + 2\alpha\theta$ is not enough on its own as there are two unknowns.

MP2: Quoting appropriate formula(e) is not enough. There must be some attempt at substituting the data.

3

[6]

3

- 2.
- (a) 2.9 rev s⁻¹ equivalent = $2\pi \times 2.9$ rad s⁻¹ = 8.2 rad s⁻¹

OR
$$I = 2 E_k / \omega^2$$

OR correct substitution in $E_{\rm k}$ = ½ $I\,\omega^2\,$ ✓

leading to
$$I = 6.2 \times 10^{-2} \text{ kg m}^2 \checkmark$$

1st mark for correct conversion rev s⁻¹ OR rearranging energy equation in terms of I OR correct substitution in $E_k = \frac{1}{2} I \omega^2$

2nd mark for correct answer.

Do not allow final answer to 1 sig fig e.g. 0.06

(b) *I* depends on how mass is distributed about axis (of rotation)

For arms, screw and punch same mass is/point masses are closer to axis than the steel balls (making M of I lower) \checkmark

I depends on r^2 so I changes greatly for small change in in r \checkmark Allow 'other parts' or 'other components' if it is clear this means screw, punch and arms

2

(c)
$$\alpha = \frac{2 \times \pi \times (0 - 2.9)}{0.089} = -205 \text{ rad s}^{-2} \checkmark$$

Attempt to use $\omega_2^2 = \omega_1^2 + 2\alpha\theta$ or $\theta = \omega_1^2 + 2\alpha\theta$

or
$$\theta = \frac{1}{2} (\omega_1 + \omega_2)t$$
 \checkmark

giving θ = 0.81 rad \checkmark

Condone missing sign or α given as positive Accept 200 rad s $^{-2}$

If α positive, 2nd mark for attempt to use

$$\omega_2^2 = \omega_1^2 - 2\alpha\theta$$
 or $\theta = \omega_1 t - \frac{1}{2}\alpha t^2$

or
$$\theta = \frac{1}{2}(\omega_1 + \omega_2)t$$

ECF for value of ω used in (a)

3

(d) $(I = 2 mr^2 \text{ and } E_k = \frac{1}{2} I \omega^2)$

Increasing y by 15% gives new $I = 1.15^2 \times \text{original } I \text{ (or 1.32) } \checkmark$

Increasing R by 15% increases I by 1.15³ (or 1.52) \checkmark

Second option gives greater increase in I, and $E_{\rm k}$ also increased (by same ratio). \checkmark

Accept answers without calculation:

I prop to
$$y^2 \checkmark$$

I prop to
$$R^3 \checkmark$$

For <u>same</u> % increase in y or R, I and hence E_k increases more by increasing R \checkmark

Note: $E_{\rm k}$ = $m~r^2~\omega^2$ = 4/3 $\pi~R^3~\rho~r^2~\omega^2$ for each ball

3

(e) ✓ against N m s

[11]

2 (a)

	Place a tick or ticks in this column
The moment of inertia will decrease	
The angular velocity will decrease	✓
The angular momentum will be unaltered	✓

(b) Flywheel acts as store of energy ✓

Able to deliver large amount of $E_{\rm K}$ in short time \checkmark

Without flywheel motor would stall during stamping (as load torque excessively high) \checkmark $_{max \ 2}$

(c) Converts rev min⁻¹ to rad s⁻¹: 67.0 and 37.7 rad s⁻¹ \checkmark

$$E_{\rm K} = \frac{1}{2} \times 25 \times (67.0^2 - 37.7^2) = 3.83 \times 10^4 \,\text{J}$$

(d) $\alpha = (\omega_2 - \omega_1)/t$

=
$$(67.0 - 37.7)/5.0 = 5.86 \text{ rad s}^{-2} \checkmark$$

$$T = I \alpha$$

$$= 25 \times 5.86 = 147 \checkmark$$

If (67 - 0)/5.0 used, leading to T = 335 give 1 mark

Allow approach using angular displacement θ and change in energy

$$\theta$$

(e) $P = \Delta E_K / t = 7.7 \text{ kW } \checkmark$

OR
$$P = T \times \omega_{AVE} = 147 \times 52.4 = 7.7 \text{ kW } \checkmark$$
Allow CE from 01.4

2

2

1

(f) For smaller speed variation, greater I required \checkmark

I proportional to
$$\rho t r^4$$
 $(I = \frac{1}{2}\pi r^2 t \rho r^2)$

Shows that greatest ρtr^4 is for flywheel B \checkmark (hence B)

OR discusses qualitatively:

A has smaller r but compensated for by greater t and ρ (hence greater m) \checkmark

B has smaller mass because of low ρ and t but much greater r r is squared twice ✓

$$m_A = 498 \text{ kg}, m_B = 228 \text{ kg}$$

i.e. m_A roughly $2 \times m_b$
but r_B^2 is roughly $3 \times r_A^2$
hence $I_B > I_A$

[12]

(Gravitational potential energy of falling mass) is converted to linear/translational ke of (a) mass and rotational ke of wheel √

1

3

and internal energy in bearings / air around wheel ✓

1

(b) (Use of
$$mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 + T\theta$$
)
 $mgh = 2.94 J$

4.

$$(0.200 \times 9.81 \times 1.50) = (0.5 \times 0.200 \times 2.22^{2}) + (0.5 \times 1 \times 6.73^{2})$$

$$\frac{1}{2}mv^{2} = 0.493 J$$

$$+ (7.5 \times 10^{-3} \times 4.55)$$

$$T\theta = 0.0728 J$$

 E_P or E_K correct \checkmark

1

If friction torque not worked out out, give up to max 2 marks. Give full marks if friction torque worked out and stated as negligible.

All E_P , E_K and $T\theta$ correct \checkmark

1

Leading to
$$I = 2.41(3) / 22.6 \checkmark (= 0.107 \text{ kg m}^2)$$

Gives $I = 0.108 \text{ kg m}^2$

1

(c)
$$\alpha = T/I = 7.5 \times 10^{-3} / 0.107 = 0.0701 \text{ rad s}^{-2} \checkmark$$

substitution of
$$\omega_2$$
 = 0, ω_1 = 6.73 and α into ${\omega_2}^2$ = ${\omega_1}^2$ – $2\alpha\theta$ leading to θ = 323 rad \checkmark

OR

 ${}^{1}2l\omega^2 = T\theta$ 0.5 × 0.107× 6.73² = 7.5 × 10⁻³ θ \checkmark
 0 0 = 323 rad 0 1 Give CE if

 0 1 = 0.108 kg 0 2 used

[7]