

A-Level Physics

Rutherford Scattering Experiment

Mark Scheme

Time available: 61 minutes Marks available: 42 marks

www.accesstuition.com

Mark schemes

- (a) Electromagnetic √
 Reject electrostatic as it is not one of the fundamental forces.
 - (b) Arrow drawn at X in a direction radially away from the centre of the gold nucleus \checkmark
 - (c) Answer number 5 or 6 plus one consistent justification ✓ First mark must come with at least one justification.

One more consistent justification \checkmark

List of justifications:

Cannot be 1, 2, or 3 as these s alpha's deflect up. Or must be 5 to 9 as these all alpha's deflect down.

Cannot be 4 as this would backscatter or is scattered at 180°

Cannot be 7, 8 or 9 as the deflection would be too small. Or must be 2, 3, 5, 6 as these have a greater deflection than alpha1.

The second mark is possible to obtain with two consistent justifications even if the first mark is missed.

E.g. if an answer 7 is given then quoting the first two justifications gains a mark.

(d) (Using of potential energy = $\frac{Qq}{4\pi\epsilon_0 r}$

Substituting the values of the two charges multiplied together into an equation $(2 \times 1.6 \times 10^{-19})(79 \times 1.6 \times 10^{-19}) \checkmark_1$

$$\mathsf{PE} = \frac{2 \times 79 \times \left(1.6 \times 10^{-19}\right)^2}{4\pi \times 8.9 \times 10^{-12} \times 5.5 \times 10^{-14}} \text{ or } 6.58 \times 10^{-13} \text{ (J) } \checkmark_2$$

 $_{\rm 2}$ The substitution may be inferred at the next stage of the calculation that uses

$$KE = \frac{1}{2} mv^2 = PE$$

(loss of KE = $\frac{1}{2}mv^2$ = gain in PE}

$$\left(v = \left(\frac{2 \times 6.58 \times 10^{-13}}{6.8 \times 10^{-27}}\right)^{1/2}\right)$$

 $v = 1.4 \times 10^7 \text{ (m s}^{-1}) \checkmark_3$

1

1

2

(e) Using by substitution or rearrangement $R = r_o A^{1/3} \checkmark$

$$R_{Ag} = 5.7 \times 10^{-15} \text{ (m) } \checkmark$$

$$\left(R_{Ag} = R_{Au} \times \left(\frac{A_{Au}}{A_{Ag}}\right)^{1/3}\right)$$

$$\left(R_{Ag} = 6.98 \times 10^{-15} \times \left(\frac{107}{197}\right)^{1/3}\right)$$

The use of the equation must involve both nuclei.

(f) Nucleons are incompressible / Nucleons have a constant separation / Neutrons and protons have similar masses / Neutrons and protons have similar volumes ✓

A mark can be given for 'nucleons touch' but it must be implied that this is with all 12 neighbours'.

[10]

(a) (i) electromagnetic / electrostatic / Coulomb (repulsion between the alpha particles and the nuclei) \checkmark

The interaction must be named not just described.

1

2

1

 the scattering distribution remains the same (because the alpha particles interact with a nucleus) whose charge / proton number / atomic number remains the same or the (repulsive) force remains the same

The mark requires a described distribution and the reason for it.

Or

2.

the scattering distribution changes / becomes less distinct because there is a mixture of nuclear masses (which gives a mixture of nuclear recoils) \checkmark (owtte)

A reference must be made to mass and not density or size.

1

1

(b) (i) use of graph to find r_0 e.g. $r_0 = 6.0 \times 10^{-15} / 75^{1/3} \checkmark$ (or 8.0 × 10⁻¹⁵ / 175^{1/3})

 $(r_0 = 1.43 \times 10^{-15} \text{ m})$

Substitution and calculation t must be shown.

Condone a gradient calculation on <u>R against A^{1/3}</u> graph (not graph in question) as $R \propto A^{1/3}$

Escalate if clip shows $^{27}_{13}$ Al in the question giving R \approx 4 × 10⁻¹⁵ m. (ii)

(using $R = r_0 A^{\frac{1}{3}}$) $R = 1.43 \times 10^{-15} \times 51^{1/3} \sqrt{10^{-15}}$ $R = 5.3 \times 10^{-15} \text{ (m) } \checkmark$ $(R = 5.2 \times 10^{-15} \text{ m from})$ $r_0 = 1.4 \times 10^{-15}$ m) First mark for working. Second mark for evaluation which must be 2 or more sig figs allow CE from (i) $R = 3.71 \times (i)$. Possible escalation.

Escalate if clip shows $\frac{27}{13}$ in the question and / or the use of 27 in the working. (c)

density = mass / volume $m = 51 \times 1.67 \times 10^{-27}$ $(= 8.5 \times 10^{-26} \text{ kg})$

> Give the first mark for substitution of data into the top line or bottom line of the calculation of density.

```
v = 4/3\pi (5.3 \times 10^{-15})^3
```

(6.2(4) × 10⁻⁴³ m³)

In the second alternative the mark for the substitution is only given if the working equation is given as well.

Or

density = $A \times u / 4/3\pi (r_0 A^{1/3})^3$ $= u / 4 / 3\pi (r_0)^3$ $51 \times 1.67 \times 10^{-27}$ would gain a mark on its own but 1.66×10^{-27} would need $u / 4/3 \pi (r_0)^3$ as well to gain the mark.

top line = 1.66×10^{-27}

bottom line = $4/3\pi (1.43 \times 10^{-15})^3$

```
✓ for one substitution
```

```
density = 1.4 \times 10^{17} \checkmark
(1.37 \times 10^{17})
```

kg m⁻³ √

Expect a large spread of possible answers. For example If $R = 5 \times 10^{-15}$ V = 5.24 × 10⁻⁴³ and density = 1.63 × 10¹⁷. Possible escalation.

3

2

3.	(a)	(i) to prevent absorption/deflection/interaction/collision of the α particle (by the air) (1)		
		 (ii) (nucleus) has a positive charge (or same charge sign as an α particle (nucleus) contains most of the mass (or is very dense) (1) (1) (any two) (nucleus) is small compared to the separation between nuclei (iii) electromagnetic or electrostatic or Coulomb (1) 		
			4	
	(b)	(particle 1) path is straighter than path of particle 2 (1) (particle 3) path is bent more than path of particle 2, with minimum radius of curvature near the minimum separation and in front of the nucleus (1)	2	[6]
	(\mathbf{a})	α particles have a short range in air (2, 5 cm) (1)		[0]
4.	(a)	(or to minimise collisions between α particles and air molecules) (1)		
	(b)	the α particles must not be absorbed by the foil (1) (or the α particles must only be scattered once) (1)		
	(c)	a majority of α particles pass straight through (1) most α particles do not pass close enough to be deflected (or few pass close enough to be deflected significantly) (1)		
		atoms consist mainly of open space (1) nuclei are very small (or nucleus much smaller than the atom) (1) the nucleus is massive (or most of the mass of the atom is contained in the nucleus) the nucleus is positively charged		
		(or the nucleus and the α particle have the same charge) (1)		
		The Quality of Written Communication marks were awarded primarily for the quality of answers to this part.		[6]
5.	(a)	alpha particles undeflected (1) some through small angles (1) (very) small (but significant) number deflected through > 90° (1)	max 2	
	(b)	atom mostly empty space (1) positive charge concentrated (1) in a volume much less than total volume [or radius] (1)	max 2	[4]
6.	(a)	to prevent the α particles being absorbed or scattered (1) by air molecules (1)	(2)	
			(-)	

www.accesstuition.com

- (b) (i) little or no deflection (1)by a majority of *α* particles (1)
 - (ii) some α particles suffer large deflection [or backscattering occurs] (1)

(3)

 (c) first path continues undeflected (1) third path shows backscattering (inside the dotted circle) (1) second path undeflected or deflected downwards and fourth path undeflected or deflected upwards (1)

[8]

(3)