

A-Level Physics

Scalars and Vectors

Mark Scheme

Time available: 88 minutes Marks available: 63 marks

www.accesstuition.com

Mark schemes

1.

(a) States tension in \mathbf{P} + tension in \mathbf{Q} = 750 + 1800

OR

tension in **Q** = 1400 N

OR

Distance from **Q** = $3.6 - d \checkmark$

Use of principle of moments \checkmark

(*d* =) 2.4 (m) √

alternative

Finds component of tension in **P** due to worker's weight = 250 N / Finds tension in **P** (due to weight of worker) by dividing weight of platform by 2 and subtracts from 1150 N

OR

Finds component of tension in **Q** due to worker's weight = 500 N / Finds tension in **Q** (due to weight of worker) by dividing weight of platform by 2 and subtracts from 1400 N \checkmark Recognises the ratio of weight distribution to worker position relative to cables **P** and **Q** 250 N : 500 N = 3.6 - $d : d \checkmark$ (principle of moments)

$$(d =) 2.4 (m) \checkmark$$

(b) Extension = 0.18 m or use of $\varepsilon = \frac{\Delta L}{L}$ or reads off *d* correctly for their extension \checkmark

(*d* =) 1.8 m ✓

- (c) $(\sigma =) 1.14 \times 10^7 (\text{N m}^{-2}) \checkmark \text{c.a.o}$
- (d) Straight line with negative gradient \checkmark

Line passes through (0, 0.46) √

Line passes through (3.6, 0.26) 🗸

[9]

3

2

1

2.	(a)	Volume = area × length = $4.16 \times 10^{-4} \text{ m}^3 \checkmark$	
		Mass correct = W/g = 3.6 kg \checkmark To give density 8.6 × 10 ³ And therefore brass \checkmark <i>Alternative for MP2 and MP3</i> (for brass) Mass of brass = density × volume = 3.58 kg \checkmark Weight = 3.58 × 9.81 = 35 N And therefore brass is correct. \checkmark	3
	(b)	Use of $T = 2$ (35) cos 55 \checkmark = 40 N \checkmark	
		Allow 1 max for any one error	2
	(c)	Weight/tension in rope still 35 N OR is constant \checkmark	
		Angle to horizontal decreases so cos(angle) increases \checkmark	
		(Therefore tension in cable must increase)	
		Allow reference to $T = 2(35) \cos(angle)$ for MP2	2
	(d)	Component at right angle to door =	-
		41 cos (90-12)	
		= 8.5 N ✓	
		Moment = $8.5 \times 0.95 = 8.1 (\text{N m}) \checkmark$ Alternative: Perpendicular distance = $0.95 \sin (12)$ = $0.198 \text{ m }\checkmark$ Moment = $41 \times 0.198 = 8.1 \checkmark$	

(e) Increase weight of $A \checkmark$

Increases tension and therefore moment \checkmark

Position pulley R further from pillar \checkmark

Increases angle and therefore bigger perpendicular component and therefore moment. \checkmark

Any 2 pairs
Condone (without discussion of effect on angle)
Move D further from hinge ✓
Increases perpendicular distance and therefore moment ✓

3.

(a) Closed triangle of forces drawn ✓

Appropriate scale ✓

 θ = 23 to 27 (°) \checkmark

U = 77 to 81 (N) \checkmark

31 N

52 N

Accept scale where 10 N is represented by at least 1 cm.

Treat each marking point independently. Do not accept answers for U and θ without a scale diagram. Maximum of 3 marks for a free-body diagram where forces have been drawn to scale. (Check figure 8)

4

4

[13]

	(b)	<i>V</i> is vertical / Force at Y is now vertical / <i>V</i> does not have a horizontal component / $V = S + 31$ / <i>V</i> is perpendicular to the pole / <i>V</i> is of greater magnitude than <i>U</i> / Force at Y has increased in magnitude \checkmark		
		(Because) S and weight (or <i>mg</i>) are both vertical (in Fig 3) \checkmark		
		(Because) greater moment of weight (about Y) in Fig 3 / smaller moment of weight (about Y) in Fig 1 / (Because) <i>S</i> is larger in magnitude than <i>D</i> (to produce a greater moment (about Y because they are equal distances from Y) \checkmark		
			3	[7]
4.	(a)	0.56 (N) ✓	1	
	(b)	Definition of couple as two equal forces acting in opposite directions \checkmark		
	()	Moment of a couple is independent of the point about which moments are taken \checkmark		
		Forces (are equal but) don't act in opposite directions, therefore it is not correct ✓ Combined moment of the two forces depends on the point about which moments are taken, therefore not correct. ✓	2	
	(c)	Use of total upward force = total downward force	2	
	(0)	1 mark for any attempt to equate upward and downward forces. Response may be on diagram.		
		eg 0.87 + 0.62 = 1.12 + W ✓		
		0.32 (N) ✓		
		Attempt to use Principle of Moments \checkmark		
		0.14 (m) ✓		
		Allow MP4 if (their W) \times (their d) = 0.0448	4	
	(d)	Readings (on A and B) would be the same/1.44 (N) \checkmark		
		(Because) total downwards force/weight is same		
		OR		
		All (perpendicular) distances affected by the same factor		
		(cos θ) √		
			2	[9]

(a) The <u>centre of mass</u> of the beam and box is at the pivot \checkmark

Idea that moments balance / sum of the moments is zero at this position \checkmark

OR

The anticlockwise moment (of weight of the beam) = clockwise moment (of weight of the box) \checkmark

Links pivot position to a consideration of moments \checkmark

Accept one route or the other, do not accept points from both. Allow max 1 for "the pivot is to the right of the centre (of mass) of the beam" 'pivot' on its own does not get the first mark Award 2 for $1.25 \times$ weight of beam = $1.5 \times$ weight of empty box Confusion of moments with eg work done/forces = max 1

(b) Clockwise moment = 610 × 9.81 × 1.5 (= 8976 N m) ✓

Anticlockwise moment = $250 \times 4 + T \sin 50 \times 4.0$ (N m) \checkmark

Use of clockwise = anticlockwise√

Use of T sin 50° seen / relates vertical component to tension \checkmark

T (= 1994/sin 50°) = 2600 (N)√

Credit any evidence to work out a moment with one mark Condone cos 50 in MP2. Allow ecf for clockwise moment Allow ecf for anticlockwise moment Use of $g = 10 \text{ N kg}^{-1}$ gives 2990 N Omission of 4.0 m (g = 9.8) gives 10410 N. Use of cos 50 (g = 9.8) gives 3100 N Allow max 4 for use of $g = 10 \text{ N kg}^{-1}$.

5

2

(c) $7.5 = \frac{1}{2} g t^2 \checkmark$

(t = 1.2 s)

(calculate distance)

 $s (= ut = 18 \times 1.2) = 22 \text{ (m)} \checkmark$ Allow ecf from incorrect t for MP2

(d) (Range will be greater:)

component of velocity upwards \checkmark

rock will spend longer in the air \checkmark

greater $t \checkmark$

therefore the range is greater \checkmark

OR

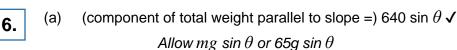
(Range will be smaller)

Counterweight will fall less far before projectile released ✓

Less energy transferred to rock \checkmark

Initial speed of rock less/horizontal velocity reduced \checkmark

therefore the range is smaller \checkmark


OR

(balanced arguments)

therefore the range is unchanged / answer is indeterminate ✓
Candidates can argue from both lists to reach a balanced view suggesting that there is no change.
Full credit can be obtained from 2 deductions from one list ✓ ✓+ consistent conclusion ✓
1 deduction from each list ✓ ✓+ consistent conclusion ✓
Do not allow an unsupported conclusion.
Conclusion must be consistent with correct statements.
Treat incorrect statements as neutral.
Do not reward arguments based on a longer time of flight.

X 3

[12]

(b) use of $P = Fv \checkmark$

- $(\theta =) 17 (\circ) \checkmark$ Ecf from (a) Alternative MP1: Determines work done in one second 310 = mgh giving h = 0.486and determines the distance travelled along the slope of the hill = 1.63 OR Use of $sin \theta = \frac{height \text{ gained per second}}{distance travelled per second}$
- (c) Gains less height every second ✓

Gains less potential energy every second \checkmark

Less useful power output 🗸

Alternatives: Force applied acts over a greater distance for the same change in height ✓ Less force required \checkmark Less power output required ✓ OR Same gain in GPE requires same gain in height ✓ Takes longer time to gain height as greater distance to travel \checkmark Less power output ✓ OR Effective θ has decreased \checkmark mg sin θ has decreased \checkmark less power output ✓ OR The component of the velocity parallel to the slope has decreased \checkmark $P = Fv \cos \theta$ has decreased \checkmark Less power output ✓ General marking principle: MP1 basic point / MP2 consequence (in terms of energy) / MP3 less power

(d) Draws tangent to curve at $t = 10 \text{ s} \checkmark$

Attempts to determine gradient of tangent \checkmark

(acceleration =) 0.21 (m s⁻²) \checkmark Accept answers in range 0.16 to 0.26 (m s⁻²)

(e) Air resistance increases with speed \checkmark

And

MAX 3 from:

Initially, all energy transferred (per sec) to kinetic energy of cyclist 🗸

As speed increases energy transferred (per second) to kinetic energy of cyclist decreases \checkmark

As speed increases energy transferred (per second) to the air increases ✓

At top speed energy transferred (per second) is transferred to air \checkmark

4