

Simple Harmonic Motion

Mark Scheme

Time available: 58 minutes Marks available: 42 marks

Mark schemes

1. (a) Use of time = angle / angular speed \checkmark

To get $3.5 \mathrm{~s} \checkmark$
(b) Arrow towards centre of turntable starting at the block. \checkmark
(c) Use of $F=m r w^{2} \checkmark$

To give $0.10 \mathrm{~N} \checkmark$
(d) Block constantly changing direction (at constant speed) \checkmark

Ref to N1 and therefore force must apply \checkmark
OR
Changing direction shows (centripetal) acceleration \checkmark

Reference to N 2 and therefore force must apply \checkmark
(e) Use of pendulum equation \checkmark

To give $1.55 \mathrm{~m} \checkmark$
(f) Amplitude - the pendulum shadow amplitude becomes less than the block shadow amplitude \checkmark

Phase - time period decreases/changes as pendulum amplitude gets less/closer to zero so shadow of bob will move ahead of block/phase changes \checkmark condone the two shadows remain in phase (as pendulum motion isochronous for small angles)
2. (a) (use of $v=2 \pi f \sqrt{a^{2}}-x^{2}$)
$v_{\text {max }}=2 \pi \times 2.0 \times 2.5 \times 10^{-2}$
$v_{\text {max }}=0.314 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$
(use of $E_{k}=1 / 2 m v^{2}$)
$54 \times 10^{-3}=1 / 2 \mathrm{~m} \times(0.314)^{2}$
$m=1.1(\mathrm{~kg}) \checkmark$
$f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
$2.0 \times 2 \pi=\sqrt{ }(k / 1.1) \checkmark$
$\left(k=(4 \pi)^{2} \times 1.1\right)$
$k=173(172.8) \sqrt{ }\left(\mathrm{N} \mathrm{m}^{-1}\right)$
Can
OR
$5.4 \times 10^{-3}=1 / 2 k\left(2.5 \times 10^{-2}\right)^{2} \checkmark$
$k=173$ (172.8) $\mathrm{N} \mathrm{m}^{-1} \checkmark$
If either of these methods used can then find mass from frequency formula or from kinetic energy

OR
$54 \times 10^{-3}=1 / 2 F \times 2.5 \times 10^{-2}$
$F=4.32$
$4.32=k \times 2.5 \times 10^{-2}$
$k=173\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$
Accept 170 and 172.8 to 174
(b) (use of $f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$))
same mass so $f \propto \sqrt{k}$
thus frequency $=2.0 \times \sqrt{3}$
frequency $=3.5(3.46)(\mathrm{Hz}) \checkmark$
Allow CE from (a) for k or m
(c) Two from:
(resonance) peak / maximum amplitude is at a higher frequency \checkmark due to higher spring constant \checkmark
(resonant) peak would be broader \checkmark
due to damping \checkmark
amplitude would be lower (at all frequencies) \checkmark
due to energy losses from the system \checkmark
First mark in each case for effect
Second mark for reason
2 marks max for effects
2 marks max for reason
Cannot award from sketch graph unless explained
First mark in each pair stand alone
Second mark conditional on first in each pair
[10]
3. (a) SHM is when

The acceleration is proportional to the displacement $\sqrt{ }$
the acceleration is in opposite direction to displacement \checkmark
(b) $f=1 / T=1 / 0.05=20 \mathrm{~Hz} \checkmark$
$\left(v_{\text {max }}=2 \pi f A\right)$
$A=\frac{0.044}{2 \pi \times 20} \checkmark\left(=3.5 \times 10^{-4} \mathrm{~m}\right)$
(c) Cosine shape drawn, maximum at $t=0$, amplitude $3.5 \times 10^{-4} \mathrm{~m} \checkmark$
(d) (any of the following when the velocity is zero) $0.00 \mathrm{~s}, 0.025 \mathrm{~s}, 0.050 \mathrm{~s}$ or $0.075 \mathrm{~s} \checkmark$
(e) when the vibrating surface accelerates down with an acceleration less than the acceleration of free fall the sand stays in contact.
above a particular frequency, the acceleration is greater than $g \checkmark$
there is no contact force on the sand $O R$
sand no longer in contact when downwards acceleration of plate is greater than acceleration of sand due to gravity \checkmark
(f) (when the surface acceleration is the same as free fall)

$$
\begin{aligned}
& g=r \varpi^{2}=\mathrm{A}(2 \pi f)^{2} \checkmark \\
& f=\sqrt{ }\left(\mathrm{g} / \mathrm{A} 4 \pi^{2}\right)=\left(9.81 /\left(3.5 \times 10^{-4} \times 4 \pi^{2}\right)\right)^{1 / 2}=26.6(7) \mathrm{Hz} \checkmark
\end{aligned}
$$

4. (a) acceleration is proportional to displacement (from equilibrium) \checkmark

Acceleration proportional to negative displacement is $1^{\text {st }}$ mark only.
acceleration is in opposite direction to displacement
or towards a fixed point / equilibrium
Don't accept "restoring force" for accln.
position \checkmark
(b) (i) $f\left(=\frac{1}{2 \pi} \sqrt{\frac{g}{l}}\right)=\frac{1}{2 \pi} \sqrt{\frac{9.81}{0.984}} \checkmark=0.503(0.5025)(\mathrm{Hz})$

3SF is an independent mark.
[or $T\left(=2 \pi \sqrt{\frac{l}{g}}\right)=2 \pi \sqrt{\frac{0.984}{9.81}} \quad \checkmark(=1.9(90)(\mathrm{s})$)
When $g=9.81$ is used, allow either 0.502 or 0.503 for $2^{\text {nd }}$ and $3^{\text {rd }}$
marks.
$\left.f\left(=\frac{1}{T}\right)=\frac{1}{1.990}=0.503(0.5025)(\mathrm{Hz}) \checkmark\right]$
Use of $\boldsymbol{g}=9.8$ gives 0.502 Hz : award only 1 of first 2 marks if quoted as $0.502,0.5030 .50$ or 0.5 Hz .
answer to 3SF \checkmark
(ii)

$$
\begin{aligned}
& a\left(=-(2 \pi f)^{2} x\right)=(-)(2 \pi \times 0.5025)^{2} \times 42 \times 10^{-3} \\
& \text { Allow ECF from any incorrect f from (b)(i). } \\
&=0.42(0.419)\left(\mathrm{m} \mathrm{~s}^{-2}\right)
\end{aligned}
$$

(c) recognition of 20 oscillations of (shorter) pendulum and / or 19 oscillations of (longer) pendulum \checkmark

Explanation: difference of 1 oscillation or phase change of 2π
or $\Delta t=0.1$ so $n=2 / 0.1=20$, or other acceptable point \checkmark
time to next in phase condition $=38$ (s) \checkmark
Allow "back in phase (for the first time)" as a valid explanation.
$[$ or $(T=1.90 \mathrm{~s} \mathrm{so})(n+1) \times 1.90=n \times 2.00 \checkmark$
gives $n=19$ (oscillations of longer pendulum) \checkmark
minimum time between in phase condition $=19 \times 2.00=38(\mathrm{~s}) \checkmark]$

