
 A-Level Physics
 Superposition and Stationary Waves
 Mark Scheme

Time available: 89 minutes Marks available: 65 marks

Mark schemes

1. (a) Max 2

Antiphase / completely out of phase / π radian out of phase \checkmark
Allow $1 / 2$ cycle or 180° out of phase
Condone:
'Move in opposite directions'
'Displaced in opposite directions'
'when P is at its peak then Q is at its trough'
for loose descriptions of antiphase
'Opposite amplitudes' too vague (treat as neutral)
'When P is positive Q is negative' too vague
Similar amplitudes (of vibration) or similar (magnitudes of) displacement (at any instant in time) \checkmark

Same period or same frequency \checkmark
Move with the same speed \checkmark
Allow same amplitude / same (magnitude of) displacement
(b) Use of $v=f \lambda$ or determines the wavelength $=0.275 \mathrm{~m} \checkmark$

Condone use of wavelength $=0.55 \mathrm{~m}$ or
0.1375 m in substitution for $1^{\text {st }} \mathrm{MP}$

Condone Power of ten errors on wavelength for $1^{\text {st }} \mathrm{MP}$
Two errors forfeit $1^{\text {st }}$ mark:
Allow wavelength in range 0.27 to 0.28 m
$(v=) 69 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$
Allow answers in range 67.5 to $70.0 \mathrm{~m} \mathrm{~s}^{-1}$
(c) Same speed $\sqrt{ }$

Moving in opposite directions \checkmark
same wavelength / same frequency/ similar amplitudes \checkmark
The following are insufficient:
Progressive / transverse / transfer energy
Allow same amplitudes
(d) Horizontal line drawn from \mathbf{P} to $\mathbf{Q} \checkmark$
(e) Marks an A at each end of the string \checkmark

Condone other incorrect antinodes or nodes drawn ($1^{\text {st }} \mathrm{MP}$)
Marks all 5 As (evenly spaced by eye) on a horizontal line \checkmark cao

Penalise incorrect number A or poorly positioned A (2nd $M P)$

(f) Third harmonic / third harmonic drawn in Figure $6 \checkmark$

Frequency for first harmonic has reduced to $1 / 3$ of previous or
$\mathrm{f}=\frac{1}{3} \times \frac{1}{2 L} \sqrt{\frac{T}{\mu}}$
or
speed reduces to $1 / 3$ of previous \checkmark
String being driven at three times this frequency \checkmark
Must be a clear statement that this is $3^{\text {rd }}$ harmonic / accept 3 symmetrical loops drawn in Figure 6
Where no other mark has been scored allow 1 mark for:

- Speed decreases
- Fundamental frequency is lower/ frequency of $1^{\text {st }}$ harmonic is lower
- use of
$\mathrm{f}=\frac{1}{2 L} \sqrt{\frac{T}{\mu}}$
where 9μ has been substituted correctly (accept in any correct rearrangement)

2. (a) Substitution of data in $Y=\frac{F L}{A \varepsilon}$
$3.1 \times 10^{-3}(\mathrm{~m}) \checkmark$
2 marks can be awarded if $4 m m$ used to show $T>500 \mathrm{~N}$ provided an explanation is provided, otherwise award zero.
(b) $\quad(500=T \cos 65)$
$T=1200 \mathrm{~N} \checkmark$
(c) Wind produces a wave / disturbance that travels along the wire \checkmark

Wave is reflected at each end / waves travel in opposite directions \checkmark
(Incident and reflected) waves interfere / superpose \checkmark
Only certain frequencies since fixed ends have to be nodes. \checkmark
(d) Mass per m of the wire $=0.14(2) \mathrm{kg} \checkmark$
(e) Use of $f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}(=2.47)$ to find fundamental
(or $f=\frac{3}{2 l} \sqrt{\frac{T}{\mu}}$)
Third harmonic $=7.4(\mathrm{~Hz}) \checkmark$
The second mark is for multiplying the fundamental frequency by 3 - allow ecf
(f) Diagram showing three approximately equally spaced loops Condone single line
(g) Copper may be stretched beyond elastic limit / may deform plastically \checkmark

Permenant deformation / Does not return to original length \checkmark Allow 'will remain longer than original' or 'will be permenantly deformed'
3. (a) 180 degrees accept ${ }^{\circ}$ for degrees

OR
π radians \checkmark
condone ${ }^{c}$ or 'rad' for radian
reject 'half a cycle'
treat ' π radians in phase' as talk out
(b) (idea that) sets of combining waves do not have the same amplitude \checkmark
condone 'waves do not have same intensity' or 'same energy' or 'some energy is absorbed on reflection' or 'same power' or 'same strength' or idea that non point source or non point receiver would lead to imperfect cancellation
condone the idea that the waves may not be monochromatic ignore 'some waves travel further' or 'waves do not perfectly cancel out'
reject 'waves may not be 180° out of phase'
(c) valid use of a set square or protractor against TR (to ensure
perpendicular) ${ }_{1} \checkmark$
measure x at two different points [at each end of M] and adjust until [make sure] both distances are the same ${ }_{2} \checkmark$

OR
use of set square to align M with the perpendicular line earns ${ }_{2} \checkmark$
if method used does not allow continuous variation in x then award maximum 1 mark

OR
align graph paper with $\mathrm{TR}_{1} \checkmark$
align M with grid lines on graph paper ${ }_{2} \checkmark$
both marks can be earned for suitable sketch showing a viable procedure involving one or more recognisable set squares or protractors; the sketch may also show a recognisable ruler, eg

allow use of scale on set square to measure the perpendicular distances don't penalise incorrect reference to the set square, eg as 'triangular ruler', as long as the sketch shows a recognisable set square
(d) $\mathrm{G}_{\text {max }}$ line ruled through bottom of $n=3$ error bar and through top of $n=11$ error bar $1 \checkmark$
$\mathrm{G}_{\text {min }}$ line ruled through top of $n=5$ error bar and through bottom of $n=13$ error bar ${ }_{2} \checkmark$
$\mathrm{G}_{\text {max }}$ and $\mathrm{G}_{\text {min }}$ calculated from valid y step divided by valid x step;
both n steps $\geq 6_{3} \checkmark$
allow 1 mm tolerance when judging intersection of gradient lines with error bars
ignore any unit given with $G_{\text {max }}$ or $G_{\text {min }}$; penalise power of ten error in 01.5

${ }_{12} \sqrt{ }=1$ MAX if (either) line is thicker than half a grid square or of variable width or not continuous;
expect $G_{\max }=3.2(1) \times 10^{-2}$ and $G_{\min }=2.5(2.49) \times 10^{-2}$
(e) $\lambda\left(\right.$ from $\frac{{ }^{G} \max ^{+G} \mathrm{~min}}{2}$)

AND
result in range 2.8(0) to $2.9(0) \times 10^{-2}(\mathrm{~m})_{1} \checkmark{ }_{2} \checkmark$
OR
award one mark for
$2.7(0)$ to $3.0(0) \times 10^{-2}(\mathrm{~m})_{12} \checkmark$
penalise 1 mark for a power of ten error
reject 1 sf 3×10^{-2} (m)
if a best fit line is drawn between the $G_{\max }$ and $G_{\text {min }}$ lines and the gradient of this is calculated award 1 mark for λ in range 2.8(0) to $3.0(0) \times 10^{-2}(\mathrm{~m})$
(f) uncertainty in $\lambda=\mathrm{G}_{\max }-\lambda$

OR
$\lambda-G_{\text {min }}$
OR
$\left(\frac{{ }^{G} \max ^{-G} \min }{2}\right), \checkmark$
percentage uncertainty $=($ uncertainty $/ \lambda) \times 100_{2} \checkmark$
result in range 11(.0) \% to 14(.0) \% $3_{3} \checkmark$
${ }_{1} \checkmark$ can be earned by showing a valid uncertainty then dividing by λ
ecf their $\lambda, G_{\max }$ and $G_{\min }$ for ${ }_{1} \checkmark$ and $_{2} \checkmark$
allow λ found from best fit line
accept $\left(\frac{{ }^{G} \max ^{-} \lambda}{\lambda}\right) \times 100$ or $\left(\frac{{ }^{G} \max -{ }^{G} \min }{{ }^{G} \max +{ }^{G} \min }\right) \times 100$ etc for ${ }_{12} \checkmark$
allow $\left(\frac{\Delta \lambda}{\lambda}\right) \times 100$ where $\Delta \lambda$ is any plausible uncertainty for ${ }_{2} \checkmark$ numerical answer without valid working can only earn ${ }_{3} \checkmark$
(g) (states) calculate the (vertical) intercept ${ }_{1} \checkmark$

OR
outlines a valid calculation method to calculate $y_{1} \checkmark$
determine the intercept for both lines and calculate average value ${ }_{2}$ \checkmark

OR
determine the (vertical) intercept of the line of best fit (between $\mathrm{G}_{\max }$ and $\left.\mathrm{G}_{\text {min }}\right)_{2} \checkmark$
draw the line of best fit (between $G_{\text {max }}$ and $G_{\text {min }}$); perform calculation to find intercept earns ${ }_{12} \checkmark$
(h)

result	reduced	not affected	increased
$G_{\max }$		\checkmark	
$G_{\min }$	\checkmark		
λ	\checkmark		
y			\checkmark

general marker question
allow any distinguishing mark as long as only one per row
for \checkmark and X in same row ignore X
for \checkmark and \checkmark in same row give no mark
ignore any crossed-out response
alternative approach: single best fit line drawn on Figure 4
(d) G calculated from y step divided by x step;
n step $\geq 6{ }_{3} \checkmark$

MAX 1
(e) λ in range 2.8(0) to $2.9(0) \times 10_{-2} \checkmark$
(f) percentage uncertainty in $\lambda=\left(\frac{\Delta \lambda}{\lambda}\right) \times 100$

AND
result in range $11(.0)$ \% to $14(.0) \% \checkmark$
MAX 1

MAX 1
(g) calculate intercept

OR
outlines a valid calculation method to find $y \checkmark$
MAX 1
(h) as main scheme
no ecf possible
alternative approach: non-crossing lines for $G_{\max }$ and $G_{\min }$ on Figure 4:
includes lines that meet but do not cross
(d) $\quad \mathrm{G}_{\max }$ and $\mathrm{G}_{\min }$ calculated from y step divided by x step; both n steps

$$
\geq 6_{3} v
$$

MAX 1
(e) to (h) as main scheme
4. (a) Initially the path difference is zero/the two waves are in phase when they meet/the (resultant) displacement is a maximum \checkmark

Alternative:
Constructive interference occurs when the path difference is a whole number of wavelengths and the waves are in phase

As the movable tube is pulled out, the path difference increases and the two waves are no longer in phase, so the displacement and loudness decrease \checkmark

Destructive interference occurs when the path difference is an odd number of half wavelengths and the waves are in antiphase

When the path difference is one half wavelength, the two are in antiphase and sound is at its quietest. \checkmark

Initially the path difference is zero and the sound is loud

To give: $340 / 800=0.425 \mathrm{~m} \checkmark$
Path difference $=$ one half wavelength $=0.21 \mathrm{~m} \checkmark$
The second mark is for relating the wavelength to the path difference

Path difference $=2\left(d_{2}-d_{1}\right)=2$ (distance moved by movable tube)

Distance moved by movable tube $=0.10 \mathrm{~m} . \checkmark$
The final mark is for relating this to the distance moved by the tube and working out the final answer.
(c) Start with $\mathrm{d} 1=\mathrm{d} 2$
(Alternative mark scheme involving changing frequency and measuring to first min for each one can gain equal credit)

Measure distance moved by movable tube for each successive minima and maxima $\sqrt{ }$
Start with d1 = d2
Measure distance moved by movable tube for first minimum.

Each change in distance is equal to one quarter wavelength. \checkmark
Distance is equal to one quarter wavelength

Continue until tube is at greatest distance or repeat readings for decreasing distance back to starting point. \checkmark

Repeat for different measured frequencies.

Use speed $=$ frequency \times wavelength \checkmark
Use speed $=$ frequency x wavelength)
5. (a) waves are reflected (from the oven wall) \checkmark
and superpose/interfere with wave travelling in opposite direction/incident waves/transmitted wave \checkmark

NOT superimpose
(b) energy/amplitude is maximum \checkmark
(chocolate melts at) antinode \checkmark
if refer to node can still be awarded first mark
(c) clear evidence that used first and third antinode \checkmark can be from diagram
distance from first to third antinodes $=0.118 \pm 0.001(\mathrm{~m})$ OR
distance between two adjacent antinodes $=0.059 \pm 0.001(\mathrm{~m}) \checkmark$
mark for either value
carry their value forward for subsequent marks even if outside tolerance
wavelength $=0.118(\mathrm{~m}) \checkmark$
mark for using their wavelength (range 0.112 to 0.124)
frequency $=3.0 \times 10^{8} / 0.118 \checkmark$
mark for use of $v=f \lambda$ allow this mark if use 0.059
frequency $=2.5 \times 10^{9}(\mathrm{~Hz}) \checkmark$
must be in range $2.40 \times 10^{9}-2.60 \times 10^{9}$
if use 330 for speed lose last 2 marks
(d) position of antinode/maximum energy/maximum amplitude/nodes (in food) continually changes \checkmark must be clear antinode maximum energy/maximum amplitude changes location

