

A-Level Physics

Superposition and Stationary Waves

Mark Scheme

Time available: 89 minutes Marks available: 65 marks

www.accesstuition.com

Mark schemes

1. ^(a) Max 2

Antiphase / completely out of phase / π radian out of phase Allow ½ cycle or 180° out of phase Condone:
'Move in opposite directions'
'Displaced in opposite directions'
'when P is at its peak then Q is at its trough' for loose descriptions of antiphase
'Opposite amplitudes' too vague (treat as neutral)
'When P is positive Q is negative' too vague

Similar amplitudes (of vibration) **or** similar (magnitudes of) displacement (at any instant in time) \checkmark

Same period or same frequency \checkmark

Move with the same speed ✓ Allow same amplitude / same (magnitude of) displacement

- Use of v = f λ or determines the wavelength = 0.275 m √
 Condone use of wavelength = 0.55 m or
 0.1375 m in substitution for 1st MP
 Condone Power of ten errors on wavelength for 1st MP
 Two errors forfeit 1st mark:
 Allow wavelength in range 0.27 to 0.28 m
 - (v =) 69 m s⁻¹ ✓

Allow answers in range 67.5 to 70.0 m s⁻¹

(c) Same speed ✓

Moving in opposite directions \checkmark

same wavelength / same frequency/ similar amplitudes ✓ The following are insufficient: Progressive / transverse / transfer energy Allow same amplitudes

(d) Horizontal line drawn from P to $Q \checkmark$

2

2

3

(e) Marks an A at each end of the string \checkmark

Condone other incorrect antinodes or nodes drawn (1st MP)

Marks all 5 As (evenly spaced by eye) on a horizontal line \checkmark cao

Penalise incorrect number A or poorly positioned A (2nd MP)

	0		
<u>P</u>	, M	4	1

(f) Third harmonic / third harmonic drawn in Figure 6 \checkmark

Frequency for first harmonic has reduced to 1/3 of previous or

$$f = \frac{1}{3} \times \frac{1}{2L} \sqrt{\frac{T}{\mu}}$$

or

speed reduces to 1/3 of previous √

String being driven at three times this frequency \checkmark

Must be a clear statement that this is 3^{rd} harmonic / accept 3 symmetrical loops drawn in **Figure 6**

Where no other mark has been scored allow 1 mark for:

Speed decreases

• Fundamental frequency is lower/ frequency of 1st harmonic is lower

use of

$$f = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$$

where 9μ has been substituted correctly (accept in any correct rearrangement)

[13]

3

2

(a) Substitution of data in
$$Y = \frac{FL}{A\varepsilon}$$

•

3.1 × 10⁻³ (m) √

2 marks can be awarded if 4mm used to show T>500 N provided an explanation is provided, otherwise award zero.

2

1

(b) $(500 = T\cos 65)$

2.

T = 1200 N ✓

(c)	Wind produces a wave / disturbance that travels along the wire \checkmark		
	Wave is reflected at each end / waves travel in opposite directions \checkmark		
	(Incident and reflected) waves interfere / superpose \checkmark		
	Only certain frequencies since fixed ends have to be nodes. \checkmark	4	
(d)	Mass per m of the wire = 0.14(2) kg \checkmark	1	
(e)	Use of $f = \frac{1}{2l} \sqrt{\frac{T}{\mu}} (= 2.47)$ to find fundamental		
	$(\text{or } f = \frac{3}{2l} \sqrt{\frac{T}{\mu}})$		
	Third harmonic = 7.4 (Hz) ✓ The second mark is for multiplying the fundamental frequency by 3 – allow ecf		
(f)	Diagram showing three approximately equally spaced loops Condone single line	2	
(g)	Copper may be stretched beyond elastic limit / may deform plastically ✓	1	
	Permenant deformation / Does not return to original length √ Allow 'will remain longer than original' or 'will be permenantly deformed'	2	[13]
(a)	180 degrees accept ° for degrees		
	OR		
	π radians \checkmark		
	condone ^c or 'rad' for radian		
	reject 'halt a cycle' treat ' π radians in phase' as talk out		
		1	

3.

(b) (idea that) sets of combining waves do not have the same amplitude ✓

> condone 'waves do not have same intensity' or 'same energy' or 'some energy is absorbed on reflection' or 'same power' or 'same strength' or idea that non point source or non point receiver would lead to imperfect cancellation condone the idea that the waves may not be monochromatic ignore 'some waves travel further' or 'waves do not perfectly cancel out' reject 'waves may not be 180° out of phase'

(c) valid use of a set square or protractor against TR (to ensure perpendicular) 1 ✓

measure x at two <u>different</u> points [at each end of M] <u>and</u> adjust until [make sure] both <u>distances are the same</u> $_2 \checkmark$

OR

use of set square to align M with the perpendicular line earns $_2$ \checkmark

if method used does not allow <u>continuous</u> variation in *x* then award maximum 1 mark

OR

align graph paper with TR 1 🗸

align M with grid lines on graph paper $_2 \checkmark$

both marks can be earned for suitable sketch showing a viable procedure involving one or more recognisable set squares or protractors; the sketch may also show a recognisable ruler, eg

allow use of scale on set square to measure the perpendicular distances don't penalise incorrect reference to the set square, eg as 'triangular ruler', as long as the sketch shows a recognisable set square

2

(d) G_{max} line <u>ruled</u> through bottom of n = 3 error bar and through top of n = 11 error bar $1\sqrt{}$

 G_{min} line <u>ruled</u> through top of n = 5 error bar and through bottom of n = 13 error bar $_2 \checkmark$

 G_{max} and G_{min} calculated from valid *y* step divided by valid *x* step; both *n* steps $\ge 6_3 \checkmark$

allow 1 mm tolerance when judging intersection of gradient lines with error bars

ignore any unit given with G_{max} or G_{min} ; penalise power of ten error in 01.5

 $_{12}$ \checkmark = 1 MAX if (either) line is thicker than half a grid square or of variable width or not continuous;

expect $G_{max} = 3.2(1) \times 10^{-2}$ and $G_{min} = 2.5 (2.49) \times 10^{-2}$

(e)
$$\lambda(\text{from}\frac{{}^{G}\text{max}^{+G}\text{min}}{2})$$

AND

result in range 2.8(0) to 2.9(0) × 10⁻² (m) $_{1}$ \checkmark $_{2}$ \checkmark

OR

award one mark for

2.7(0) to $3.0(0) \times 10^{-2}$ (m) $_{12} \checkmark$ penalise 1 mark for a power of ten error reject 1 sf 3×10^{-2} (m) if a best fit line is drawn between the G_{max} and G_{min} lines and the gradient of this is calculated award 1 mark for λ in range 2.8(0) to $3.0(0) \times 10^{-2}$ (m)

(f) uncertainty in $\lambda = G_{max} - \lambda$

OR

$$\lambda - G_{\min}$$

OR

$$\left(\frac{{}^{G}\text{max}^{-G}\text{min}}{2}\right)_{1}\checkmark$$

percentage uncertainty = (uncertainty/ λ)×100 ₂ \checkmark

result in range 11(.0) % to 14(.0) % $_3 \checkmark$

 $_{1}\checkmark$ can be earned by showing a valid uncertainty then dividing by λ ecf their λ , G_{max} and G_{min} for $_{1}\checkmark$ and $_{2}\checkmark$ allow λ found from best fit line accept $\left(\frac{G_{max}-\lambda}{\lambda}\right) \times 100 \text{ or } \left(\frac{G_{max}-G_{min}}{G_{max}+G_{min}}\right) \times 100 \text{ etc for }_{12}\checkmark$ allow $\left(\frac{\Delta\lambda}{\lambda}\right) \times 100$ where $\Delta\lambda$ is any plausible uncertainty for $_{2}\checkmark$

numerical answer without valid working can only earn $_3 \checkmark$

3

(g) (states) calculate the (vertical) intercept $_{1}$ \checkmark

OR

outlines a valid calculation method to calculate $y_1 \checkmark$

determine the intercept for both lines and calculate average value 2

√ OR

determine the (vertical) intercept of the line of best fit (between G_{max} and $G_{min})$ $_2$ \checkmark

draw the line of best fit (between G_{max} and G_{min}); perform calculation to find intercept earns $_{12} \checkmark$

(h)

result	reduced	not affected	increased
G _{max}		\checkmark	
G _{min}	\checkmark		
λ	\checkmark		
У			\checkmark

general marker question

allow any distinguishing mark as long as only one per row for \checkmark and X in same row ignore X for \checkmark and \checkmark in same row give no mark ignore any crossed-out response

alternative	approach:	single	best fit line	drawn on	Figure 4

4.

(d) G calculated from y step divided by x step; $n \text{ step} \ge 6_3 \checkmark$ MAX 1 λ in range 2.8(0) to 2.9(0) × 10₋₂ \checkmark (e) MAX 1 percentage uncertainty in $\lambda = \left(\frac{\Delta \lambda}{\lambda}\right) \times 100$ (f) AND result in range 11(.0) % to 14(.0) % √ MAX 1 (g) calculate intercept OR outlines a valid calculation method to find $y \checkmark$ MAX 1 (h) as main scheme no ecf possible 4 alternative approach: non-crossing lines for G_{max} and G_{min} on Figure 4: includes lines that meet but do not cross G_{max} and G_{min} calculated from y step divided by x step; both n steps (d) ≥ 6 3 √ MAX 1 (e) to (h) as main scheme 1 Initially the path difference is zero/the two waves are in phase when they meet/the (a) (resultant) displacement is a maximum √ Alternative: Constructive interference occurs when the path difference is a whole number of wavelengths and the waves are in phase 1 As the movable tube is pulled out, the path difference increases and the two waves are no longer in phase, so the displacement and loudness decrease \checkmark Destructive interference occurs when the path difference is an odd

number of half wavelengths and the waves are in antiphase

1

[18]

	When the path difference is one half wavelength, the two are in antiphase and sound is at its quietest. \checkmark	
	Initially the path difference is zero and the sound is loud	1
	As the path difference continues to increase, the two waves become more in phase and the sound gets louder again. \checkmark	
	As the pipe is pulled out the path difference gradually increases, changing the phase relationship and hence the loudness of the sound	1
(b)	Use of wavelength = speed / frequency	
	The first mark is for calculating the wavelength	1
	To give: $340 / 800 = 0.425 \text{ m} \checkmark$	
	Path difference = one half wavelength = 0.21 m \checkmark	
	The second mark is for relating the wavelength to the path difference	
	Path difference = 2 ($d_2 - d_1$) = 2 (distance moved by movable tube)	1
	Distance moved by movable tube = 0.10 m. \checkmark	
	The final mark is for relating this to the distance moved by the tube and working out the final answer.	1
(c)	Start with $d1 = d2$	-
	(Alternative mark scheme involving changing frequency and measuring to first min for each one can gain equal credit)	
	Measure distance moved by movable tube for each successive minima and maxima $$ Start with d1 = d2	
	Measure distance moved by movable tube for first minimum.	1
	Each change in distance is equal to one quarter wavelength. \checkmark	
	Distance is equal to one quarter wavelength	1
	Continue until tube is at greatest distance or repeat readings for decreasing distance back to starting point. \checkmark	
	Repeat for different measured frequencies.	1
	Use speed = frequency x wavelength \checkmark	
	Use speed = frequency x wavelength)	1

5.	(a)	waves are <u>reflected</u> (from the oven wall) \checkmark	1
		and superpose/interfere with wave travelling in opposite direction/incident waves/transmitted wave \checkmark	1
		NOT superimpose	1
	(b)	energy/amplitude is maximum 🗸	
		(chocolate melts at) antinode ✓	1
		if refer to node can still be awarded first mark	1
	(c)	clear evidence that used first and third antinode \checkmark	
		can be from diagram	1
		distance from first to third antinodes = 0.118 ± 0.001 (m) OR distance between two adjacent antinodes = 0.059 ± 0.001 (m) \checkmark	1
		mark for either value carry their value forward for subsequent marks even if outside tolerance	
		wavelength -0.118 (m) \checkmark	1
		mark for using their wavelength (range 0.112 to 0.124)	
		frequency = $3.0 \times 10^8 / 0.118 \checkmark$	1
		mark for use of $v = f\lambda$ allow this mark if use 0.059	
		frequency = 2.5×10^9 (Hz) \checkmark	1
		must be in range 2.40 × 10 ⁹ – 2.60 × 10 ⁹	
		if use 330 for speed lose last 2 marks	1
	(d)	position of antipode/maximum energy/maximum	1
	(u)	amplitude/nodes (in food) continually changes √	
		must be clear antinode maximum energy/maximum amplitude changes location	
			1 [10]
			[.•]