

## A-Level Physics The Michelson-Morley Experiment Question Paper

Time available: 49 minutes Marks available: 33 marks

www.accesstuition.com

1.

The figure below shows the features of a Michelson-Morley interferometer.



Explain how, using this arrangement, Michelson and Morley attempted to detect the absolute motion of the Earth.

In your answer you should:

- outline the experimental procedure
- explain the expected result of the experiment

describe the actual result and explain the significance of this result.

(Total 6 marks)

2.

**Figure 1** shows a diagram of the Michelson-Morley interferometer that was used to try to detect the absolute motion of the Earth through the ether (æther).

Light from the monochromatic source passes through the semi-silvered glass block and takes two different paths to the viewing telescope. The two paths,  $PM_1$  and  $PM_2$ , are the same length. Interference fringes are observed through the viewing telescope.

Figure 1



It was predicted that when the interferometer was rotated through 90° the fringe pattern would shift by 0.4 of the fringe spacing.

| Your answer should include:  • an explanation of why a shift of the fringe pattern was predicted • a comparison of the results of the experiment to the prediction • the conclusion about the Earth's absolute motion through the ether.                   | a) | Explain how the experiment provided a means of testing the idea that the Earth had an absolute motion relative to the ether. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------|
| a comparison of the results of the experiment to the prediction the conclusion about the Earth's absolute motion through the ether.  The Michelson-Morley experiment provides evidence for one of the postulates of Einstein theory of special relativity. |    | Your answer should include:                                                                                                  |
| theory of special relativity.                                                                                                                                                                                                                              |    | a comparison of the results of the experiment to the prediction                                                              |
| theory of special relativity.                                                                                                                                                                                                                              |    |                                                                                                                              |
| State this postulate.                                                                                                                                                                                                                                      |    | The Michelson-Morley experiment provides evidence for one of the postulates of Einstein's theory of special relativity.      |
|                                                                                                                                                                                                                                                            |    | State this postulate.                                                                                                        |
|                                                                                                                                                                                                                                                            |    |                                                                                                                              |
|                                                                                                                                                                                                                                                            |    |                                                                                                                              |

| <br> | <br> | <br> |  |
|------|------|------|--|
|      |      |      |  |

(d) One consequence of the special theory of relativity is length contraction.

Experimental evidence for length contraction is provided by the decay of muons produced in the atmosphere by cosmic rays.

**Figure 2** shows how the percentage of the number of muons remaining in a sample changes with time as measured by an observer in a frame of reference that is stationary relative to the muons.



Figure 2

| percentage = | %<br>(4)<br>(Total 12 marks) |
|--------------|------------------------------|
|              |                              |
|              |                              |

In a particular experiment, muons moving with a velocity 0.990c travel a distance of 1310

m through the atmosphere to a detector.

Determine the percentage of muons that reach the detector.

The diagram shows the paths of light rays through a simplified version of the apparatus used by Michelson and Morley.

3.



In the apparatus, light waves reflected by the mirrors  $M_1$  and  $M_2$ , meet at P so that they superpose and produce interference fringes. These are observed using the microscope.

Michelson and Morley predicted that the fringes would shift when the apparatus was rotated through 90°. They thought that this shift would enable them to measure the speed of the Earth through a substance, called the aether, that was thought to fill space.

| a) | Explain why Michelson and Morley expected that the fringe positions would shift when th apparatus was rotated through 90°. |
|----|----------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                            |
|    |                                                                                                                            |
|    |                                                                                                                            |
|    |                                                                                                                            |
|    |                                                                                                                            |

(2)

- (b) In their apparatus they made the distances  $PM_1$  and  $PM_2$  the same and equal to d. They used light of wavelength ( $\lambda$ ) about 550 nm and knew that the speed of light c was  $3.0 \times 10^8$  m s<sup>-1</sup>. Using known astronomical data, they calculated the speed v at which they thought the Earth moved through the aether. They were then able to predict that when the apparatus was rotated through  $90^\circ$  the fringes should shift by a distance 0.4f, where f was the fringe spacing.
  - (i) To determine v, Michelson and Morley assumed that the Sun was stationary with respect to the aether as the Earth moved through it.

Suggest, using this assumption, how the speed  $\nu$  of the Earth through the aether could be determined. You do not need to do the calculation.

\_\_\_\_\_

(ii) Michelson and Morley calculated v to be  $3.0 \times 10^4$  m s<sup>-1</sup>. They worked out  $\Delta f$ , the magnitude of the expected shift of the fringes, using the formula  $\Delta f = \frac{2v^2d}{c^2\lambda}f$ .

Calculate the distance d they used in their experiment.

d = m

(1)

(1)

| the<br>per | (Total 6 chelson and Morley attempted to detect absolute motion by investigating whether or not speed of light in a direction parallel to the Earth's motion differs from the speed of light pendicular to the Earth's motion.  Cuss what resulted from this experiment and what was concluded. |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| the<br>per | chelson and Morley attempted to detect absolute motion by investigating whether or not speed of light in a direction parallel to the Earth's motion differs from the speed of light pendicular to the Earth's motion.                                                                           |
| the<br>per | chelson and Morley attempted to detect absolute motion by investigating whether or not speed of light in a direction parallel to the Earth's motion differs from the speed of light pendicular to the Earth's motion.                                                                           |
| the<br>per | chelson and Morley attempted to detect absolute motion by investigating whether or not speed of light in a direction parallel to the Earth's motion differs from the speed of light pendicular to the Earth's motion.                                                                           |
| the<br>per | speed of light in a direction parallel to the Earth's motion differs from the speed of light pendicular to the Earth's motion.                                                                                                                                                                  |
| Dis        | cuss what resulted from this experiment and what was concluded.                                                                                                                                                                                                                                 |
|            |                                                                                                                                                                                                                                                                                                 |
|            |                                                                                                                                                                                                                                                                                                 |
|            |                                                                                                                                                                                                                                                                                                 |
|            |                                                                                                                                                                                                                                                                                                 |
|            |                                                                                                                                                                                                                                                                                                 |
|            |                                                                                                                                                                                                                                                                                                 |
| Sys        | a science fiction story, a space rocket left the Earth in 2066 and travelled out of the Solar stem at a speed of $0.80c$ , where $c$ is the speed of light in vacuo, to a star 16 light years in the Earth.                                                                                     |
| (i)        | How many years, in the frame of reference of the Earth, did the spacecraft take to reach the star?                                                                                                                                                                                              |
|            |                                                                                                                                                                                                                                                                                                 |

| A member of the crew<br>person on arrival at th | was 21 years old on leaving the Eane star? | arth. How old was this |
|-------------------------------------------------|--------------------------------------------|------------------------|
|                                                 |                                            |                        |
|                                                 |                                            |                        |
|                                                 |                                            |                        |
|                                                 |                                            |                        |
|                                                 |                                            |                        |