

## The Young Modulus

Mark Scheme

Time available: 66 minutes Marks available: 46 marks

## Mark schemes

1. (a) place mirror behind ruler ${ }_{1} \checkmark$
adjust position (of eye / head) until pin hides its own reflection ${ }_{2} \checkmark$
for ${ }_{1} \sqrt{ }$ do not insist on contact between mirror and ruler; accept sketch if mirror is parallel to ruler
for ${ }_{2} \checkmark$ accept 'pin lines up with reflection / image'
allow ${ }_{12} \sqrt{ }=1$ MAX
for convincing explanation of set-square placed against vertical ruler then aligned with pin
OR
move (clamped) ruler closer to pin
(b) strategy:
$y$ (as the dependent variable) measured for different values of one independent variable ${ }_{1} \downarrow$
identifies one correct control variable ${ }_{2} \sqrt{ }$
for ${ }_{1} \checkmark$ accept y read OR recorded;
for ${ }_{2} \checkmark$ control variables $m$ OR L only;
$m=$ independent variable and $L=$ control variable $O R$
$m=$ control variable and $L=$ independent variable ${ }_{12} \checkmark \checkmark$
if $L$ is being varied and $m=250 \mathrm{~g}$ is stated, this can be taken as $m$ = control variable and therefore known;
take a similar approach if $m$ is being varied but in this case $L$ must be less than 30 cm
idea that $w$ and/or $t$ are control variables is neutral
for more than one independent variable, eg variation of both $m$ and $L_{12} X X$ but allow ecf for ${ }_{4} \checkmark$ as long as plot is valid, eg y against $m L^{3}$
suitable measuring instruments for $L, w$ and $t_{3} V$
use of ruler to measure L AND use of micrometer screw gauge OR digital / electronic callipers to obtain $w$ and $d$ procedures to reduce random / systematic error are neutral
analysis:
suggests valid plot ${ }_{4} \checkmark$
identifies correctly how $E$ can be found ${ }_{5} \checkmark$
for ${ }_{4} \sqrt{ }$ expect $y$ [by itself or combined with another factor] on the vertical axis and their independent variable / some valid manipulation of their independent variable on the horizontal axis for ${ }_{5} \sqrt{ } E$ must be the subject of the expression given examples:
ploty against $m 4 \checkmark E=\frac{4 \times L^{3} \times g}{w \times t^{3} \times \text { gradient }} 5 \checkmark$
plot $y$ against $L^{3} 4 \checkmark E=\frac{4 \times m \times g}{w \times d^{3} \times \text { gradient }} 5 \checkmark$
plot y against $\frac{4 \times L^{3}}{w \times t^{3}} 4 \checkmark E=\frac{m \times g}{\text { gradient }} 5 \checkmark$
$\log y$ against $\log m 4 \sqrt{ } E=\frac{4 \times g \times L^{3}}{w \times t^{3} \times 10^{\text {intercept }}} 5 \checkmark$
$\log y$ against $\log L 4 \sqrt{ } E=\frac{4 \times m \times g}{w \times t^{3} \times 10^{\text {intercept }}} 5 \checkmark$
2. (a) correctly deduces extension is 2.6 or $2.7 \mathrm{~mm} \checkmark$

Should see $A C^{2}=1.50^{2}+\left(6.34 \times 10^{-2}\right)^{2}$;
(new) $A C=1.50134$;
Extension of $A C=(1.50134-1.50=) 0.00134 \mathrm{~m}$ or 1.34 mm ; and then doubles this
Final value must be to at least 2 sf
(b) evidence of correct working: $\checkmark$
$\sin \theta=\frac{6.34 \times 10^{-2}}{\text { their new AC }} \quad$ or $\theta=2.42^{\circ}$ seen
OR
$W=2 T \sin \theta$ seen
OR
suitable vector diagram with $\theta$ labelled
tension correctly calculated from $\frac{1.0}{2 \times \text { their } \sin \theta} \checkmark$
For ${ }_{1} \sqrt{ }$ acceptable diagrams are shown below


Correct final answer of 11.8 N or 12 N earns both marks
(c) ruled best-fit line between first and sixth points;
line must pass above $2^{\text {nd }}$ point
and
must pass below $4^{\text {th }}$ point ${ }_{1} \checkmark$ for ${ }_{1} \sqrt{ }$ withhold mark if line is thick, faint or discontinuous
gradient calculated from $\frac{\Delta(W / y)}{\Delta y^{2}}$ with $\Delta y^{2} \geq 0.004_{2} \checkmark$
(gradient ~ 3850)
for ${ }_{2} \sqrt{ }$ condone read off errors of $\pm 1$ division
for ${ }_{3} \checkmark$ note that $1.50^{3}=3.375$ so allow sub of 3.38
for ${ }_{4} \checkmark$ reject 2 sf $1.2 \times 10^{11}$
evidence of using $E=\frac{\text { their gradient } \times 1.50^{3}}{1.11 \times 10^{-7}}{ }_{3} \checkmark$
for ${ }_{3} \checkmark$ note that $1.50^{3}=3.375$ so allow sub of 3.38
$E$ in range $1.10 \times 10^{11}$ to $1.24 \times 10^{11}(\mathrm{~Pa})_{4} \checkmark$
for ${ }_{4} \sqrt{ }$ reject 2 sf $1.2 \times 10^{11}$
(d) $\mathrm{kg} \mathrm{s}^{-2} \checkmark$
no credit for $\mathrm{N} \mathrm{m}^{-1}$
correct answer only
3. (a) Attempt to resolve $\mathbf{A}$ or $\mathbf{B}$ eg $430 \times \cos 35^{\circ}$ or $T_{\mathrm{B}} \times \cos 12^{\circ} \checkmark$
$360(N) \checkmark$
If no other mark given, allow $430 \times \sin 35^{\circ}=T_{B} \times \sin 12^{\circ}$ to give 1190 N for 1 mark.
(b) Substitution of $F$ and $A$ into Young modulus or stress equation $\checkmark$
$4.4 \times 10^{-2}(\mathrm{~m}) \checkmark$
Condone POT error for Young modulus
(c) Angle of $\mathbf{A}$ decreases or angle of $\mathbf{B}$ increases $\checkmark$

Accept references to $35^{\circ}$ or $12^{\circ}$
Any correct application of trig or geometry to the situation
(eg $T_{\mathrm{B}} / T_{\mathrm{A}}=\cos \theta_{\mathrm{A}} / \cos \theta_{\mathrm{B}}$ so as $\theta_{\mathrm{A}}$ decreases, $\cos \theta_{\mathrm{A}}$ increases, $\cos \theta_{\mathrm{B}}$ decreases, so $T_{\mathrm{B}} / T_{\mathrm{A}}$ increases)

## OR

eventually $\theta_{\mathrm{B}}$ will equal $35^{\circ}, \theta_{\mathrm{A}}=12^{\circ}$ so forces will be reversed (as system is symmetrical)

## OR

sum of vertical components remains unchanged and vertical component of tension becomes less as angle A decreases $\checkmark$

Allow idea that more of the weight is supported by $\boldsymbol{B}$
$T_{\text {A }}$ decreases, following some relevant discussion $\sqrt{ }$
(d) Greater rate occurs when pulses are shorter (in time)/less modal dispersion $\checkmark$

Allow reverse arguments
Smaller diameter (leads to less modal dispersion) means smaller range of path lengths $\checkmark$
Accept idea of fewer reflections
$\mathbf{X}$ is more suitable because narrower core leads to lower modal dispersion or reduced pulse broadening $\checkmark$
4. (a) $37.8 \checkmark$

CAO
(b) random (error)
condone 'statistical' $\checkmark$
the following are neutral:
'parallax' / 'human (error)'/ '(some) results are anomalous'
(c) advantage (of using thinner beam):
(same load produces) larger (values of) $s$ or wtte $1 \checkmark$
so
the percentage uncertainty / error (in $s$ ) is reduced $2 \sqrt{ }$
for $1 \sqrt{ }$ accept 'beam bends / deflects more'
'beam extends more' / 'easier to bend' are neutral
for $2 \sqrt{ }$ the following are neutral:
'easier to make readings' / 'values (of s) are more accurate'/ 'more precise' / 'less mass needed' / 'wider range of readings'
disadvantage (of beam bending more):
idea that beam may undergo plastic deformation $3 \checkmark$
so
the graph will be non-linear / curve or wtte $4 \sqrt{ }$
or
beam 'may break' / 'slip off knife edges' and relevant comment about safety / health / hazard / 'cannot get unload data'
or
reduces range of $m$ or wtte and relevant comment about the effect on the graph, eg increase scatter $34 \sqrt{ }=1 \mathrm{MAX}$
for $3 \sqrt{ }$ accept / 'beam may become permanently deformed' or wtte / 'necking may occur'/ 'hysteresis may occur' / 'beam can reach (go past) elastic limit'
the following are neutral:
'causes systematic error' / 'beam may go past limit of proportionality' / 'need to increase height of supports' / 'beam may bend under own weight'
(d) $E \approx 10^{9}$
or
$1.14 \times 10^{9}$ seen $1 \checkmark$
for $1 \sqrt{ }$ accept $10^{9}$ seen in working
correct manipulation seen in body of answer of $s=\frac{\eta m}{E}{ }_{2} \checkmark$
for $2 \sqrt{ }$ either
substitution of their $E$ and data from Figure 8
leaving $\eta$ as only unknown: allow POT in $s$ but not in $m$
eg $\eta=\frac{\text { their } E \times 25.5\left(\times 10^{-3}\right)}{0.25}$ or
substitution of their $E$ and result of a gradient calculation: allow POT in $\Delta s$ but not in $\Delta m$
eg $\eta=1.14 \times 10^{9} \times 1.02\left(\times 10^{-1}\right)$ or
calculation involving orders of magnitude (expect $10^{-1}$ but allow $10^{2}$ for gradient)
$e g \eta \approx 10^{9} \times 10^{-1}$
correct raw result (allow POT in $E$ ) $3 \checkmark$
for $3 \sqrt{ }$ expect $1.16 \times 10^{8}$ but allow 1 sf gradient eg leading to $1.14 \times 10^{8}$
(on answer line) order of magnitude consistent with their raw result $4 \checkmark$ for $4 \sqrt{ } \eta=10^{8}$ or 8 only; allow use of their $E$ award $34 \sqrt{ }=1$ MAX for use of gradient $\approx 100$
leading to order of magnitude $=10^{11}$ or 11 only
(e) identifies that $s$ and $L$ are linked by a power law $\checkmark$
accept any correct expression (unless there is talk-out) with s or log $s$ as the subject;
treat any quantities other than $s$ and $L$ as constant except $E$ and $\eta$ possible answers are:
$s \propto L^{n}$
allow $s \propto L^{m}$ if $m$ identified as constant
$s \propto L^{3}$
$s=k L^{n}$
$\log s=n \log L+(\log ) k$
$\log s=3 \log L+(\log ) k$
$\log s=\log L^{3}+(\log ) k$
reject
$s=L^{n}$
$\log s=n \log L$
$\log s \propto n \log L$
$10^{s} \propto 10^{L}$
's and $L$ are linked logarithmically'
' $s$ is directly proportional to $L$ '
(f) $\quad(\log L=)-0.097$ seen
for $1 \checkmark$ accept any $\log L$ rounding to -0.097 ;
or
working on Figure 5 confirming a value of $\log L$ between -0.095 and $-0.1001 \checkmark$ uses Figure 5 to obtain $s$ in range 2.9 to $3.1 \times 10^{-2}(\mathrm{~m}) 2 \sqrt{ }$ working can be suitable ruled line or mark on the best-fit line / on graph axes for $2 \sqrt{ }$ accept 29, 30 or 31 mm etc reject $1 \mathrm{sf} 3 \times 10^{-2}(\mathrm{~m})$
use of wrong base
$\ln L=-0.22(3)$;
uses Figure 5 to obtain $s$ in range 1.49 to $1.51 \times 10^{-1}$ or $1.5 \times 10^{-1}(\mathrm{~m}) 12 \checkmark$ accept 15 cm etc
(g) use of Figure 4 to determine $M \checkmark$
their (final answer to) (f) $\times$ gradient of Figure 4 ( $9.8 \pm 2.5 \%$ )
minimum 2sf
condone use of 1 sf $s$
[13]
5. (a) Sum of / total clockwise $\underline{\text { moments }}=$ sum of / total anticlockwise $\underline{\text { moments }} \sqrt{ }$

For a body in equilibrium $\sqrt{ }$
(b) Clockwise moments $=2.0 \times 9.81 \times 0.25+0.65 \times 9.81 \times 0.45$
$=7.77(\mathrm{~N} \mathrm{~m}) \checkmark$
Anticlockwise moments $=\mathrm{Tsin} 30 \times 0.3 \mathrm{~V}$
$\mathrm{Tsin} 30 \times 0.3=7.77$ or $\mathrm{T}=7.77 /(\sin 30 \times 0.3) \checkmark$
$\mathrm{T}=52.0(\mathrm{~N}) \checkmark$
First mark for clockwise moments, workings or correct answer.
Second mark for anticlockwise moments.
Third mark for equating clockwise and anticlockwise moments.
Fourth mark for correct answer.
(c) tensile stress $=52.0 /\left(7.8 \times 10^{-7}\right)=6.6 \times 10^{7} \checkmark$
tensile strain $=6.6 \times 10^{7} /\left(180 \times 10^{9}\right)=3.7 \times 10^{-4} \checkmark$

