

A-Level Physics

Thermal Physics (Multiple Choice)

Question Paper

Time available: 25 minutes Marks available: 20 marks

1. An ideal gas, initially at 300 K , is compressed to half its original volume. It is then cooled at constant volume until the pressure is restored to its initial value.

What is the final temperature of the gas?

A $\quad 150 \mathrm{~K}$

B $\quad 200 \mathrm{~K}$

C $\quad 300 \mathrm{~K}$

D $\quad 600 \mathrm{~K}$

(Total 1 mark)
2. A fixed volume of an ideal gas is heated.

Which row gives quantities that double when the kelvin temperature of the gas doubles?

A	rms speed of the molecules	pressure of the gas

(Total 1 mark)
3. A solar panel transfers energy at a rate of 1.2 kW to liquid passing through it. The liquid has a specific heat capacity of $4.0 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.

When the liquid flows through the solar panel, its temperature increases by 3.0 K .
The flow rate of the liquid is

A $\quad 0.10 \mathrm{~kg} \mathrm{~s}^{-1}$. \square

B $\quad 1.1 \mathrm{~kg} \mathrm{~s}^{-1}$. \bigcirc

C $\quad 10 \mathrm{~kg} \mathrm{~s}^{-1}$.
D $\quad 100 \mathrm{~kg} \mathrm{~s}^{-1}$.
4. The diagram shows two flasks \mathbf{X} and \mathbf{Y} connected by a thin tube of negligible volume.

The flasks contain an ideal gas.
The volume of \mathbf{X} is twice the volume of \mathbf{Y}. When \mathbf{X} is at a temperature of 100 K and \mathbf{Y} is at a temperature of 400 K there is no net transfer of particles between the flasks.

X contains gas of mass m.
What is the mass of gas in \mathbf{Y} ?
A $\frac{m}{8}$

B $\frac{m}{2}$

C $2 m$

D $8 m$ \square
(Total 1 mark)
5. A sample \mathbf{P} of an ideal gas contains 1 mol at an absolute temperature T.

A second sample \mathbf{Q} of an ideal gas contains $\frac{2}{3} \mathrm{~mol}$ at an absolute temperature $2 T$.
The total molecular kinetic energy of \mathbf{P} is E.
What is the total molecular kinetic energy of \mathbf{Q} ?
A $\frac{2}{3} E$

B $\frac{3}{4} E$

C $\frac{4}{3} E$

D $\frac{3}{2} E$

6. A transparent illuminated box contains small smoke particles and air.

The smoke particles are observed to move randomly when viewed through a microscope.
What is the cause of this observation of Brownian motion?

A Smoke particles gaining kinetic energy by the absorption of light.

B Collisions between smoke particles and air molecules.

C Smoke particles moving in convection currents caused by the air being heated by the light.

D The smoke particles moving randomly due to their temperature.
(Total 1 mark)
7. A continuous stream of water falls through a vertical distance of 100 m .

The specific heat capacity of water is $4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.
What is the temperature difference of the water between the top and bottom of the waterfall?

A 0.023 K
0

B $\quad 0.23 \mathrm{~K}$
0

C 2.3 K
0

D 4.3 K
0
(Total 1 mark)
8. A student measures the power of a microwave oven. He places 200 g of water at $23^{\circ} \mathrm{C}$ into the microwave and heats it on full power for 1 minute. When he removes it, the temperature of the water is $79^{\circ} \mathrm{C}$.

The specific heat capacity of water is $4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.
What is the average rate at which thermal energy is gained by the water?
A 780 W \square
B 840 W

C $\quad 1.1 \mathrm{~kW}$

D 4.6 kW

(Total 1 mark)
9. An ice cube of mass 0.010 kg at a temperature of $0^{\circ} \mathrm{C}$ is dropped into a cup containing 0.10 kg
of water at a temperature of $15^{\circ} \mathrm{C}$.

What is the maximum estimated change in temperature of the contents of the cup?

$$
\begin{aligned}
& \text { specific heat capacity of water }=4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \\
& \text { specific latent heat of fusion of ice }=3.4 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}
\end{aligned}
$$

A $\quad 1.5 \mathrm{~K}$

B $\quad 8.7 \mathrm{~K}$

C $\quad 13.5 \mathrm{~K}$ \square

D \quad 15.0 K
(Total 1 mark)
10. Specimens \mathbf{P} and \mathbf{Q} of the same gas exert the same pressure. \mathbf{P} is at a temperature of 280 K and contains 10^{20} molecules per unit volume. The temperature of \mathbf{Q} is 350 K .

What is the number of molecules per unit volume in \mathbf{Q} ?

A $\quad 0.09 \times 10^{20}$

B $\quad 0.75 \times 10^{20}$
\circ

C $\quad 0.80 \times 10^{20}$

D $\quad 1.25 \times 10^{20}$
(Total 1 mark)
11. A fixed mass of an ideal gas initially has a volume V and an absolute temperature T. Its initial pressure could be doubled by changing its volume and temperature to

A $\quad V / 2$ and $4 T$
B $\quad V / 4$ and $T / 2$
C $\quad 2 V$ and $T / 4$
D $\quad 4 V$ and $2 T$
(Total 1 mark)
12. In the diagram the dashed line \mathbf{X} shows the variation of pressure, p, with absolute temperature, T, for 1 mol of an ideal gas in a container of fixed volume.

Which line, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D} shows the variation for 2 mol of the gas in the same container?

13. A $1.0 \mathrm{k} \Omega$ resistor is thermally insulated and a potential difference of 6.0 V is applied to it for 2.0 minutes. The thermal capacity of the resistor is $9.0 \mathrm{~J} \mathrm{~K}^{-1}$. The rise in temperature, in K , is

A $\quad 1.3 \times 10^{-3}$
B $\quad 8.0 \times 10^{-3}$
C $\quad 0.48$
D $\quad 0.80$
(Total 1 mark)
14. An ideal gas is contained in a cubical box of side length a. The gas has N molecules each of mass m.

What is the pressure exerted by the gas on the walls of the box?

A $\frac{m N a^{3}}{2} \times c_{\mathrm{rms}}{ }^{2}$

B $\frac{m N a^{2}}{2} \times \mathrm{crms}^{2}$

C $\frac{m N}{3 a^{2}} \times c_{\mathrm{rms}}{ }^{2}$

D $\frac{m N}{3 a^{3}} \times c_{\mathrm{rms}}{ }^{2} \quad \bigcirc$
(Total 1 mark)
15. Which statement is true about an experiment where Brownian motion is demonstrated using
smoke particles in air? smoke particles in air?

A The experiment makes it possible to see the motion of air molecules.

The motion is caused by the collisions of smoke particles with each other.

C The motion is caused by collisions between air molecules
 and smoke particles.

The motion occurs because air is a mixture of gases and the
 molecules have different masses.
(Total 1 mark)
16. When an ideal gas at a temperature of $27^{\circ} \mathrm{C}$ is suddenly compressed to one quarter of its volume, the pressure increases by a factor of 7

What is the new temperature of the gas?
A $\quad 15^{\circ} \mathrm{C}$

B $\quad 47^{\circ} \mathrm{C}$

C $\quad 171^{\circ} \mathrm{C}$

D $\quad 252^{\circ} \mathrm{C}$ \bigcirc
17.

A They collide elastically with the container walls.

B They have negligible size compared to the distance between the container walls.

C They travel between the container walls in negligibly short times. \square

D They collide with the container walls in negligibly short times.
18. The average mass of an air molecule is $4.8 \times 10^{-26} \mathrm{~kg}$ What is the mean square speed of an air molecule at 750 K ?

A $3.3 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-2}$

B $\quad 4.3 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-2}$

C $\quad 6.5 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-2}$

D $\quad 8.7 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-2}$

(Total 1 mark)
19. Two flasks X and Y are filled with an ideal gas and are connected by a tube of negligible volume compared to that of the flasks. The volume of \mathbf{X} is twice the volume of \mathbf{Y}. \mathbf{X} is held at a temperature of 150 K and \mathbf{Y} is held at a temperature of 300 K What is the ratio $\frac{\text { mass of gas in } \mathrm{X}}{\text { mass of gas in } \mathrm{Y}}$?

A 0.125

B 0.25

C 4

D 8
20. What is the total internal energy of 2.4 mol of an ideal gas which has a temperature of $15^{\circ} \mathrm{C}$?

A $6.0 \times 10^{-21} \mathrm{~J}$

B $1.4 \times 10^{-20} \mathrm{~J}$

$$
0
$$

C $4.5 \times 10^{2} \mathrm{~J}$ \square

D $8.6 \times 10^{3} \mathrm{~J}$ \square
(Total 1 mark)

