

A-Level Physics

Time Dilation

Mark Scheme

Time available: 42 minutes Marks available: 31 marks

www.accesstuition.com

Mark schemes

- 1.
- (a) (for Proper time, $t_0 = 31,536,000 \text{ s} / 365 \text{ days}$) Dilated time, $t = 31,561,259 \text{ s} \checkmark$

Time dilation is 25,259 s / 421 minutes / 7.0 hours / 0.29 days ✓

The recorded time will be longer (as predicted) ✓
The recorded time will be less than several days longer (as predicted) ✓

Accept answers in other units (e.g. 365.3 days)

Accept an answer of 31582876 seconds / 365.5 days where a proper time of 365.25 days has been used.

4

(b) Theory of Special Relativity requires no acceleration ✓

(The spacecraft/frame of reference is) accelerating ✓

Alternative answer:

Theory of Special Relativity requires inertial reference frame ✓

(The spacecraft/frame of reference is) not an inertial reference frame \checkmark

Accept change in direction / speed / velocity as alternatives for accelerating.

2

[6]

2.

- (i) time taken $\left(\frac{dis \tan ce}{speed} = \frac{34}{0.95 \times 3.0 \times 10^8}\right) = 1.1(9) \times 10^7 \text{ s}$ (1)
- (ii) use of $t = \frac{t_0}{(1 v^2/c^2)^{1/2}}$ where $t_0 = 18$ ns

and t is the half-life in the detectors' frame of reference (1)

$$\therefore t = \frac{18 \times 10^{-9}}{(1 - 0.95^2)^{1/2}} = 57(.6) \times 10^{-9} \text{ s (1)}$$

time taken for π meson to pass from one detector to the other = 2 HALF-LIVES (APPROX) (IN THE DETECTORS' FRAME OF REFERENCE) (1) 2 HALF-LIVES CORRESPOND TO A REDUCTION TO 25%, SO 75% OF THE π MESONS PASSING THE FIRST DETECTOR DO NOT REACH THE SECOND DETECTOR (1)

alternatives for first 3 marks in (ii)

1. use of
$$t = \frac{t_0}{\sqrt{(1 - v^2 / c^2)}}$$
, where $t_0 = 18$ ns

$$= \frac{18}{(1-0.95^2)^{1/2}} = 57.6 (ns)$$

journey time in detector frame (= 2t) = 2×57.6 ns (≈ 2 half-lives)

2. use of t =
$$\frac{t_0}{\sqrt{(1-v^2/c^2)}}$$
 where t = 119 ns

= journey time in detector frame

$$t_0 = 119\sqrt{1 - 0.95^2}$$
 =37ns

journey time in rest frame = 2×18 ns (2 half-lives)

(a) Newton's laws obeyed in an inertial frame [or inertial frames move at constant velocity relative to each other] (1) suitable example (e.g. object moving at constant velocity) (1)

(b) (i) (use of
$$t = t_0 \left(1 - \frac{v^2}{c^2} \right)^{-1/2}$$
 gives) $t_0 = 18$ (ns) (1)

$$t = 18 \times 10^{-9} \left(1 - \frac{(0.995c)^2}{c^2} \right)^{-1/2}$$
 (1)

$$= 1.8 \times 10^{-7} \text{ s}$$
 (1)

(ii) time taken
$$\left(=\frac{\text{distance}}{\text{speed}}\right) = \left(\frac{108}{0.995 \times 3.0 \times 10^8}\right) = 3.6 \times 10^{-7} \text{ s (1)}$$

time taken = 2 half-lives, which is time to decrease to 25% intensity (1)

[alternative scheme: (use of $I = I_0 \left(1 - \frac{v^2}{c^2}\right)^{1/2}$ gives) $I_0 = 108$ (m)

$$I = 108 \left(1 - \frac{(0.995c)^2}{c_2} \right)^{1/2} = 10.8 \text{ m (1)}$$

time taken
$$\left(=\frac{10.8}{0.995c}\right) = 3.6 \times 10^{-8} \text{ s}$$

= 2 half-lives, which is time to decrease to 25% intensity (1)]

[5]

2

5

[7]

(i)
$$v = \frac{45}{152 \times 10^{-9}} = 2.96 \times 10^8 \text{ m s}^{-1} \text{ (1)}$$

2

(ii) t = 152 ns (1)

$$t_0 \left[= 152 \left(1 - \frac{v^2}{c^2} \right)^{1/2} \right] = 152 \left(1 - \left(\frac{2.96}{3.00} \right)^2 \right)^{1/2}$$
 (1)
$$= 25 \text{ ns (1)}$$

2 QWC 2

[4]

- (a) (i) the same or constant (1) regardless of the speed of the observer or source (1)
 - (ii) physical laws have the same form in all frames (1)

(3)

- (b) (i) T_1 or beams of mesons = 8.6 ns $\times \left(1 \frac{v^2}{c^2}\right)^{-\frac{1}{2}}$ (1) = 8.6 \times (1 0.95²) $^{-\frac{1}{2}}$ = 27.5 ns (1)
 - (ii) beam reduces to 25% in 2 half-lives (1) $v(=0.95\ c) = 2.85 \times 10^8\ m\ s^{-1}$ (1) distance = 2 × 27.5 ns × 2.85 × 10⁸ m s⁻¹ (1) = 15.6 m (1)

(6)

[9]