

A-Level Physics

Time Dilation

Mark Scheme

Time available: 42 minutes Marks available: 31 marks

1. (a) (for Proper time, $\mathrm{t}_{0}=31,536,000 \mathrm{~s} / 365$ days)

Dilated time, $\mathrm{t}=31,561,259 \mathrm{~s} \mathrm{~V}$
Time dilation is $25,259 \mathrm{~s} / 421$ minutes / 7.0 hours / 0.29 days \checkmark
The recorded time will be longer (as predicted) \checkmark
The recorded time will be less than several days longer (as predicted) \checkmark

Accept answers in other units (e.g. 365.3 days)
Accept an answer of 31582876 seconds / 365.5 days where a proper time of 365.25 days has been used.
(b) Theory of Special Relativity requires no acceleration \checkmark
(The spacecraft/frame of reference is) accelerating \checkmark
Alternative answer:
Theory of Special Relativity requires inertial reference frame \checkmark
(The spacecraft/frame of reference is) not an inertial reference frame $\sqrt{ }$

Accept change in direction / speed / velocity as alternatives for accelerating.
2. (i) time taken $\left(\frac{d i s t a n c e}{\text { speed }}=\frac{34}{0.95 \times 3.0 \times 10^{8}}\right)=1.1(9) \times 10^{7} \mathrm{~s}$ (1)
(ii) use of $t=\frac{t_{0}}{\left(1-v^{2} / c^{2}\right)^{1 / 2}}$ where $t_{0}=18 \mathrm{~ns}$
and t is the half-life in the detectors' frame of reference (1)

$$
t=\frac{18 \times 10^{-9}}{\left(1-0.95^{2}\right)^{1 / 2}}=57(.6) \times 10^{-9} \mathrm{~s}(1)
$$

time taken for meson to pass from one detector to the other
$=2$ HALF-LIVES (APPROX) (IN THE DETECTORS' FRAME OF REFERENCE) (1)
2 HALF-LIVES CORRESPOND TO A REDUCTION TO 25%, SO 75% OF THE T MESONS PASSING THE FIRST DETECTOR
DO NOT REACH THE SECOND DETECTOR (1)
alternatives for first 3 marks in (ii)

1. use of $t=\frac{t_{0}}{\sqrt{\left(1-v^{2} / c^{2}\right.}}$, where $t_{0}=18 \mathrm{~ns}$
$=\frac{18}{\left(1-0.95^{2}\right)^{1 / 2}}=57.6(\mathrm{~ns})$
journey time in detector frame $(=2 t)=2 \times 57.6 \mathrm{~ns}$ (≈ 2 half-lives)
2. use of $\mathrm{t}=\frac{t_{0}}{\sqrt{\left(1-v^{2} / c^{2}\right.}}$ where $t=119 \mathrm{~ns}$

> = journey time in detector frame
$t_{0}=119 \sqrt{1-0.95^{2}}=37 \mathrm{~ns}$
journey time in rest frame $=2 \times 18 \mathrm{~ns}$ (2 half-lives)
3. (a) Newton's laws obeyed in an inertial frame
[or inertial frames move at constant velocity relative to each other] (1) suitable example (e.g. object moving at constant velocity) (1)
(b) (i) (use of $t=t_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}$ gives) $\quad t_{0}=18(\mathrm{~ns})(1)$

$$
\begin{aligned}
t & =18 \times 10^{-9}\left(1-\frac{(0.995 c)^{2}}{c^{2}}\right)^{-1 / 2} \\
& =1.8 \times 10^{-7} \mathrm{~s}(1)
\end{aligned}
$$

(ii) time taken $\left(=\frac{\text { distance }}{\text { speed }}\right)=\left(\frac{108}{0.995 \times 3.0 \times 10^{8}}\right)=3.6 \times 10^{-7} \mathrm{~s}(\mathbf{1})$
time taken $=2$ half-lives, which is time to decrease to 25% intensity (1)
[alternative scheme: (use of $I=I_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}$ gives) $I_{0}=108(\mathrm{~m})$
$I=108\left(1-\frac{(0.995 c)^{2}}{c_{2}}\right)^{1 / 2}=10.8 \mathrm{~m}(1)$
time taken $\left(=\frac{10.8}{0.995 c}\right)=3.6 \times 10^{-8} \mathrm{~s}$
$=2$ half-lives, which is time to decrease to 25% intensity (1)]
4. (i) $v\left(=\frac{45}{152 \times 10^{-9}}\right)=2.96 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ (1)
(ii) $t=152 \mathrm{~ns}(1)$

$$
\begin{align*}
& t_{0}\left[=152\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}\right]=152\left(1-\left(\frac{2.96}{3.00}\right)^{2}\right)^{1 / 2} \tag{1}\\
& =25 \mathrm{~ns}(\mathbf{1})
\end{align*}
$$

QWC 2
5. (a) (i) the same or constant (1)
regardless of the speed of the observer or source (1)
(ii) physical laws have the same form in all frames (1)
(b) (i) $T_{\frac{1}{2}}$ or beams of mesons $=8.6 \mathrm{~ns} \times\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}$

$$
=8.6 \times\left(1-0.95^{2}\right)^{-\frac{1}{2}}=27.5 \mathrm{~ns}(1)
$$

(ii) beam reduces to 25% in 2 half-lives (1)
$v(=0.95 c)=2.85 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}(1)$
distance $=2 \times 27.5 \mathrm{~ns} \times 2.85 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}(1)$ $=15.6 \mathrm{~m}(1)$

