

A-Level Physics Torque and Angular Acceleration Mark Scheme

Time available: 51 minutes Marks available: 39 marks

www.accesstuition.com

Mark schemes

- 1.
- (a) Attempt at calculating area above or below t axis or both \checkmark (Ang displacement =) 2.80 + 2.10 3.15 = 1.75 rad $(\frac{1.75}{12.0}$ =) 0.15 (rad s⁻¹) \checkmark

Method must be valid

MP2: correct answer only

 $(calculator\ value = 0.145833)$

MAX1 if counting square method used and answer rounds to 0.15 (rad s^{-1})

2

(b) $P = T\omega$ giving 546 (W) \checkmark

Allow ecf for 590 (W) from

using $\omega_1 = 1.5 \text{ rad } s^{-1}$

1

(c) Selects steepest part of graph and

determines gradient $\alpha = \frac{1.40 - -0.90}{5.0} = 0.46 \text{ (rad s}^{-2}\text{) } \checkmark_1$

 $T = I\alpha = 9660 \text{ N m } \checkmark_2$

Adds friction torque to give 10 100 (N m) \checkmark_3

Accept any correct calculation of steepest graph slope: eg from 2 s

$$a = \frac{1.4}{3.0} = 0.467$$
 giving $T = 9800 N m$

or 5 s to 7 s

$$a = \frac{0.9}{2.0} = 0.45$$
 giving $T = 9450 N m$

Allow ECF from MP2 to MP3

Treat 10 000 (Nm) as a 2 sf answer if consistent with their working.

3

(d) (net) $T \times t = 9660 \times 5.0 = 4.8 \times 10^4$ (N m s) \checkmark

OR

$$\Delta(I\omega) = 2.1 \times 10^4 (1.40 - (-0.90)) = 4.8 \times 10^4 (\text{N m s})$$

For first method allow ECF for torque \checkmark_2 from (c), but not for \checkmark_3

(calculator value = 48300)

1

(e)

Tick (✓) against 3rd box

[8]

2.

(a) $T = mg \times l/2 = mgl/2$

1

1

(b) $\alpha = T/I \checkmark$

Substitutes T = mgl/2 and $I = \frac{m}{3}l^2$

Leading to $\alpha = \frac{3g}{2l}$

Substitution and cancelling must be seen.

$$\alpha = \frac{mgl/2}{\frac{m}{3}l^2}$$

2

(c) $a = r \times \alpha$

r = l

$$a = l \times \frac{3g}{2l} = \frac{3g}{2} \checkmark$$

This > g, so rule falls with linear accltn > g \checkmark

2

1

(d) $a = r \times \frac{3g}{2l}$

If r = 2 l/3, a = g

So mass placed about 67 cm mark ✓

[6]

```
6.3 \times 2\pi = 39.8 \text{ rad or } 40 \text{ rad } \sqrt{\phantom{0}}
       OR
        3.5 = 39.8 or 40 rad \checkmark
                        If correct working shown with answer 40 rad give the mark
                       Accept alternative route using equations of motion
                                                                                                                                   1
       \omega = v/r = 2.2 / 0.088 = 25 \text{ rad s}^{-1} \sqrt{}
(b)
                                                                                                                                   1
(c)
               E = \frac{1}{2}I\omega^2 + \frac{1}{2}mv^2 + mgh
               = (0.5 \times 7.4 \times 25^2)
               + (0.5 \times 85 \times 2.2^2)
               +(85 \times 9.81 \times 3.5)
                    = 2310 ✓
               + 206
               + 2920
               ( = 5440 J
                                   or 5400 J)
                        CE from 1b
                       \frac{1}{2} I \omega^2 + \frac{1}{2} m v^2 = 2310 + 210 = 2520 J
                       \frac{1}{2} I \omega^2 + mgh = 2310 + 2920 = 5230 J
                        \frac{1}{2}mv^2 + mgh = 210 + 2920 = 3130 J
```

Each of these is worth 2 marks

www.accesstuition.com

3

3

(d) Time of travel = distance / average speed = $3.5 / 1.1 = 3.2s \checkmark$

$$P_{\text{ave}} = \frac{5600}{3.2} = 1750 \text{ W}$$

 3.2
 $P_{\text{max}} = P_{\text{ave}} \times 2 = 3500 \text{ W} \checkmark$

OR accelerating torque = $T = W / \theta$ = 5600 / 40 = 140 N m \checkmark P = $T \omega_{max}$ = 140× 25 = 3500 W \checkmark CE from ii

1780 W if 5650 J used

[10]

2

2

4

2

4. (a) moment of inertia of the rockets

=
$$(2 \times 0.54 \times (0.80)^2) + (2 \times 0.54 \times (0.50)^2) = 0.96 \text{ (kg m}^2)$$
 (1) total moment of inertia = $0.96 + 0.14 \text{ (kg m}^2)$ (= 1.10 kg m²)

(b) (i) torque = $(2 \times 3.5 \times 0.80) + (2 \times 3.5 \times 0.50) = 9.1 \text{ N m (1)}$

(ii)
$$\alpha \left(= \frac{T}{I} \right) = \frac{9.1}{1.1} = 8.3 \text{ rad s}^{-2} \text{ (1)}$$
 (8.27 rad s⁻²)

(allow C.E. for value of torque from (i))

- (iii) one turn = 6.28 rad (1) $\theta = \omega_1 t + \frac{1}{2} \alpha t^2$ gives 6.28 = 0.5 × 8.3 × t^2 and t = 1.2(3) s (1) (allow C.E. for value of α from (ii))
- frictional couple (due to air resistance) increases as angular speed increases (1)
 when frictional couple = driving torque [or when no resultant torque], then no acceleration (1)

[8]

5. (a) Work done ✓

1

(b) The mark scheme gives some guidance as to what statements are expected to be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2) and 5 or 6 mark (L3) answer. Guidance provided in section 3.10 of the 'Mark Scheme Instructions' document should be used to assist marking this question.

-	
Mark	Criteria
6	There is a response to all 3 bullet points in the question. There is a good understanding of the function of a flywheel, and why the torque varies markedly in a diesel engine. Student can relate the answer to the two graphs. Includes 6 or more answer points from the list alongside
5	There is a response to all 3 bullet points in the question covering 6 answer points. Answers will not be as confident or detailed as for 6 marks, or answers may not be expressed using scientific terminology.
4	The student gives five or more answer points covering at least two of the bullet points.
3	At least four pertinent statements. They may show little understanding of the electric motor but should be able to give some reasons why a diesel engine needs a flywheel.
2	Two or three pertinent statements taken from the list of likely answer points.
1	One pertinent statement.
0	No sensible statements made.

Other sensible and applicable points can be accepted in lieu of any of those alongside.

Likely answer points:

1st bullet

- 1. Electric motor's constant torque means smooth motion/doesn't need smoothing/doesn't need a flywheel
- 2. motor's output torque matches the described load

2nd bullet

- 3. relates force/pressure on piston to torque
- 4. force on piston varies over one cycle (as pressure in cylinder varies)
- 5. Torque = Fr and effective r varies as crank rotates
- 6. -ve torque: when work is being done on (the gas in) the engine (during induction, comp, exhaust strokes)
- 7. Zero torque when con rod and crank are in line/at top and bottom dead centres
- 8. This happens at crank angles which are multiples of π

3rd bullet

- 9. Diesel engine's (varying torque) will give uneven/jerky motion/cause stalling
- 10. Flywheel acts as energy store
- 11. Flywheel absorbs energy on power/expansion stroke
- 12. and gives up energy on other parts of cycle
- 13. Flywheel speeds up on expansion stroke
- 14. and slows down during other strokes.
- 15. The greater the M of I of flywheel, the smoother the motion
- 16. If no flywheel engine will stall/become very uneven/jerky
- 17. The greater the M of I of flywheel, the longer engine will take to speed up, slow down/stop
- 18. Because machine has low M of I it will not be able to store energy itself or smooth the motion.

6

[7]