

A-Level Physics

Torque and Angular Acceleration

Mark Scheme

Time available: 51 minutes Marks available: 39 marks

Mark schemes

1. (a) Attempt at calculating area above or below t axis or both \checkmark
(Ang displacement =) $2.80+2.10-3.15=1.75 \mathrm{rad}$
$\left(\frac{1.75}{12.0}=\right) 0.15\left(\mathrm{rad} \mathrm{s}^{-1}\right) \checkmark$
Method must be valid
MP2: correct answer only
(calculator value $=0.145833$)
MAX1 if counting square method used and answer rounds to 0.15 (rad s${ }^{-1}$)
(b) $\quad P=T \omega$ giving $546(\mathrm{~W}) \checkmark$

Allow ecf for 590 (W) from
using $\omega_{1}=1.5 \mathrm{rad} \mathrm{s}^{-1}$
(c) Selects steepest part of graph and
determines gradient $\alpha=\frac{1.40--0.90}{5.0}=0.46\left(\mathrm{rad} \mathrm{s}^{-2}\right) \checkmark_{1}$
$T=I \alpha=9660 \mathrm{Nm} \mathfrak{V}_{2}$
Adds friction torque to give 10100 (N m) $\sqrt{3}$
Accept any correct calculation of steepest graph slope: eg from $2 s$
to 5 s
$a=\frac{1.4}{3.0}=0.467$ giving $T=9800 \mathrm{~N} \mathrm{~m}$
or $5 s$ to $7 s$
$a=\frac{0.9}{2.0}=0.45$ giving $T=9450 \mathrm{Nm}$
Allow ECF from MP2 to MP3
Treat 10000 (Nm) as a 2 sf answer if consistent with their working.
(d) (net) $T \times t=9660 \times 5.0=4.8 \times 10^{4}(\mathrm{~N} \mathrm{~m} \mathrm{~s}) \checkmark$

OR
$\Delta(I \omega)=2.1 \times 10^{4}(1.40-(-0.90))=4.8 \times 10^{4}(\mathrm{~N} \mathrm{~m} \mathrm{~s}) \checkmark$
For first method allow ECF for torque \checkmark_{2} from (c), but not for \checkmark_{3} value
(calculator value $=48300$)
(e)

Tick ($\sqrt{ }$) against 3rd box
2. (a) $T=m g \times l / 2=m g / / 2$
(b) $\quad \alpha=T / / \checkmark$

Substitutes $T=m g l / 2$ and $I=\frac{m}{3} l^{2} \checkmark$
Leading to $\alpha=\frac{3 g}{2 l}$
Substitution and cancelling must be seen.

$$
\alpha=\frac{m g l / 2}{\frac{m}{3} l^{2}}
$$

(c) $a=r \times \alpha$
$r=l$
$a=l \times \frac{3 g}{2 l}=\frac{3 g}{2} \checkmark$
This $>\mathrm{g}$, so rule falls with linear accltn $>\mathrm{g} \checkmark$
(d) $a=r \times \frac{3 g}{2 l}$

If $r=2 l / 3, a=g$
So mass placed about 67 cm mark \checkmark
3.
(a) $\frac{3.5}{(2 \pi \times 0.088)}=6.3 \mathrm{rev}$
$6.3 \times 2 \pi=39.8 \mathrm{rad}$ or $40 \mathrm{rad} \checkmark$
OR
$\frac{3.5}{0.080}=39.8$ or $40 \mathrm{rad} \checkmark$
0.088 If correct working shown with answer 40 rad give the mark Accept alternative route using equations of motion
(b) $\quad \omega=v / r=2.2 / 0.088=25 \mathrm{rad} \mathrm{s}^{-1} \checkmark$
(c) (i) $E=1 / 2 l \omega^{2}+1 / 2 m v^{2}+m g h$
$=\left(0.5 \times 7.4 \times 25^{2}\right)$
$+\left(0.5 \times 85 \times 2.2^{2}\right)$
$+(85 \times 9.81 \times 3.5)$
$=2310 \mathrm{~V}$
$+206 \quad \checkmark$
$+2920 \quad \checkmark$
(= $5440 \mathrm{~J} \quad$ or 5400 J)
CE from $1 b$
$1 / 2 I \omega^{2}+1 / 2 m v^{2}=2310+210=2520 \mathrm{~J}$
$1 / 2 I \omega^{2}+m g h=2310+2920=5230 \mathrm{~J}$
$1 / 2 m v^{2}+m g h=210+2920=3130 \mathrm{~J}$
Each of these is worth 2 marks
(ii) Work done against friction $=T \theta$

$$
=5.2 \times 40=210 \mathrm{~J} \checkmark
$$

Total work done $=\boldsymbol{W}=5400+210$
$=5600 \mathrm{~J} \checkmark 2$ sig fig \checkmark
CE if used their answer to i rather than 5400J
Accept 5700 J (using 5440 J)
Sig fig mark is an independent mark
(d) Time of travel $=$ distance $/$ average speed $=3.5 / 1.1=3.2 \mathrm{~s} \checkmark$

$$
\begin{aligned}
& P_{\mathrm{ave}}=\frac{5600}{3.2}=1750 \mathrm{~W} \\
& P_{\max }=P_{\text {ave }} \times 2=3500 \mathrm{~W}
\end{aligned}
$$

OR accelerating torque $=T=W / \theta$
$=5600 / 40=140 \mathrm{Nm} \checkmark$
$\mathrm{P}=T \omega_{\max }=140 \times 25=3500 \mathrm{~W} \checkmark$
CE from ii
1780 W if 5650 J used
[10]
4. (a) moment of inertia of the rockets
$=\left(2 \times 0.54 \times(0.80)^{2}\right)+\left(2 \times 0.54 \times(0.50)^{2}\right)=0.96\left(\mathrm{~kg} \mathrm{~m}^{2}\right)$
total moment of inertia $=0.96+0.14\left(\mathrm{~kg} \mathrm{~m}^{2}\right)(1) \quad\left(=1.10 \mathrm{~kg} \mathrm{~m}^{2}\right)$
(b) (i) torque $=(2 \times 3.5 \times 0.80)+(2 \times 3.5 \times 0.50)=9.1 \mathrm{~N} \mathrm{~m}(1)$
(ii) $\quad \alpha\left(=\frac{T}{I}\right)=\frac{9.1}{1.1}=8.3 \mathrm{rad} \mathrm{s}^{-2} \mathbf{(1)} \quad\left(8.27 \mathrm{rad} \mathrm{s}^{-2}\right)$
(allow C.E. for value of torque from (i))
(iii) one turn $=6.28 \mathrm{rad}$ (1) $\theta=\omega_{1} t+1 / 2 \alpha t^{2} \quad$ gives $6.28=0.5 \times 8.3 \times t^{2}$ and $t=1.2(3) \mathrm{s}(1)$
(allow C.E. for value of α from (ii))
(c) frictional couple (due to air resistance) increases as angular speed increases (1)
when frictional couple = driving torque [or when no resultant torque], then no acceleration (1)
5. (a) Work done \checkmark
(b) The mark scheme gives some guidance as to what statements are expected to be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2) and 5 or 6 mark (L3) answer. Guidance provided in section 3.10 of the 'Mark Scheme Instructions' document should be used to assist marking this question.

Mark	Criteria
6	There is a response to all 3 bullet points in the question. There is a good understanding of the function of a flywheel, and why the torque varies markedly in a diesel engine. Student can relate the answer to the two graphs. Includes 6 or more answer points from the list alongside
5	There is a response to all 3 bullet points in the question covering 6 answer points. Answers will not be as confident or detailed as for 6 marks, or answers may not be expressed using scientific terminology.
4	The student gives five or more answer points covering at least two of the bullet points.
3	At least four pertinent statements. They may show little understanding of the electric motor but should be able to give some reasons why a diesel engine needs a flywheel.
2	Two or three pertinent statements taken from the list of likely answer points.
1	One pertinent statement.
0	No sensible statements made.

Other sensible and applicable points can be accepted in lieu of any of those alongside.

1st bullet

1. Electric motor's constant torque means smooth motion/doesn't need smoothing/doesn't need a flywheel
2. motor's output torque matches the described load

2nd bullet

3. relates force/pressure on piston to torque
4. force on piston varies over one cycle (as pressure in cylinder varies)
5. \quad Torque $=F r$ and effective r varies as crank rotates
6. -ve torque: when work is being done on (the gas in) the engine (during induction, comp, exhaust strokes)
7. Zero torque when con rod and crank are in line/at top and bottom dead centres
8. This happens at crank angles which are multiples of π 3rd bullet
9. Diesel engine's (varying torque) will give uneven/jerky motion/cause stalling
10. Flywheel acts as energy store
11. Flywheel absorbs energy on power/expansion stroke
12. and gives up energy on other parts of cycle
13. Flywheel speeds up on expansion stroke
14. and slows down during other strokes.
15. The greater the M of I of flywheel, the smoother the motion
16. If no flywheel engine will stall/become very uneven/jerky
17. The greater the M of I of flywheel, the longer engine will take to speed up, slow down/stop
18. Because machine has low M of I it will not be able to store energy itself or smooth the motion.
