

A-Level Physics

Waves Particle Duality

Mark Scheme

Time available: 62 minutes Marks available: 51 marks

www.accesstuition.com

Mark schemes

(a)

1.

Q

because the pattern indicates diffraction \checkmark

the electrons are behaving like waves as they pass though the gaps in the graphite \checkmark

No mark for stating **Q**, but must identify as **Q** to obtain both marks. Allow one mark for demonstrating particle behaviour at **P** and **R** with one reason given:

- acceleration is a particle phenomenon

- fluorescence is due to a collision with atomic electron which is particle phenomenon.

Do not accept interference at **R**.

(b) MAX 3

Increased speed decreases wavelength OR quotes $\lambda = \frac{h}{mv} \checkmark$

Increased momentum of electrons <

Shorter associated wavelength (relative to the gaps in the graphite) \checkmark

less diffraction √

2.

(a)

Clear indication of correct process

two correct values for λv from working plus conclusion

(7.35; 7.25; 7.35) 🗸

three correct values plus conclusion \checkmark

Condone no or misuse of powers of 10 Allow use of value of h as the constant to show that v values in table are consistent with the λ values

.....

ratio approach $v_1/v_2 = \lambda_2/\lambda_1$ shown for 2 sets of data \checkmark

shown for two other sets of data + conclusion ✓
May predict one of the values assuming inverse proportionality and compare with table value
(once for 1 mark; twice for 2 marks)

2

3

1

1

[5]

(b) $h = \lambda mv$ or substitution of correct data in any form \checkmark

May determine average value using mean constant from 2.1 or average 3 calculations in this part

 $6.7(0) \times 10^{-34}$ from first and third data set; $6.6(0) \times 10^{-34}$ from second \checkmark

1

1

(c) Particle behaviour would only produce a patch/circle of light /small spot of light or Particles would scatter randomly ✓

Wave property shown by diffraction/ interference \checkmark

Graphite causes (electron)waves/beam to spread out /electrons to travel in particular directions \checkmark

Bright rings/maximum intensity occurs where waves

interfere constructively/ are in phase \checkmark

for a diffraction grating maxima when $\sin\theta = n\lambda/d$ \checkmark

Marks are essentially for

- 1. Explaining appearance of screen if particle
- 2. Identifying explicitly a wave property
- 3. Explaining what happens when diffraction occurs
- 4. Explaining cause of bright rings
- 5. Similar to diffraction grating formula (although not same)
- NB Not expected: For graphite target maxima occur when $\sin\theta$
- $=\lambda/2d$ (d =spacing of atomic layers in crystal)

1 1 1

(d) Electrons must provide enough (kinetic) energy

'instantly' to cause the excitation

OR

the atom or energy transfer in 1 to 1 interaction

OR

electron can provide the energy in discrete amounts

OR

energy cannot be provided over time as it would be in a wave

Description of Photoelectric effect = 0 Not allowed: any idea that wave cannot pass on energy, e.g. waves pass through the screen

1

Any 2 from

3.

4.

Idea of light emission due to excitation and de-excitation of electrons/atoms \checkmark

Idea of collisions by incident electrons moving electrons in atoms between energy levels/shells/orbits \checkmark

Light/photon emitted when atoms de-excite or electrons move to lower energy levels *I*

(a)	(electron) diffraction / interference / superposition \checkmark
	Accept derfraction

- (b) (use of $\lambda = h / mv$) $\lambda = 6.63 \times 10^{-34} / (9.11 \times 10^{-31} \times 2.5 \times 10^5) \checkmark$ $\lambda = 2.9 \times 10^{-9} m \checkmark \checkmark (2 \text{ sig figs.})$
- (c) $v = 2.5 \times 10^5 / 207 \checkmark$ $v = 1200 \text{ m s}^{-1} \checkmark$ OR use $v = h / m\lambda$ with CE from part (b) *Answer alone gets 2 marks*
- (a) (i) minimum energy required \checkmark

to remove electron from metal (surface) OR cadmium OR the material \checkmark

- (ii) photons have energy dependent on frequency OR energy of photons constant ✓
 one to one interaction between photon and electron ✓
 Max KE = photon energy work function in words or symbols ✓
 more energy required to remove deeper electrons ✓
- (iii) (use of $hf = \emptyset + E_{k(max)}$)

 $6.63 \times 10^{-34} \times f = 4.07 \times 1.60 \times 10^{-19} \checkmark + 3.51 \times 10^{-20} \checkmark$

 $f = 1.04 \times 10^{15} (Hz) OR 1.03 \times 10^{15} (Hz) \sqrt{\sqrt{3}} (3 sig figs)$

(b) theory makes predictions tested ✓ by repeatable/checked by other scientists/peer reviewed (experiments) OR new evidence that is repeatable/ checked by other scientists/peer reviewed√ 1 1

1

3

2

2

4

4

2

[6]

[10]

electrons can have wavelike properties and particle like properties (1)

(a)

[10]