

A-Level Physics

Work, Energy and Power

Mark Scheme

Time available: 66 minutes Marks available: 53 marks

Mark schemes

1. (a) Tangent drawn at $t=2.0 \pm 1 \mathrm{~s} \checkmark$

Use of suvat loses first 2 marks
Guidance- take tangent point to be half-way between where the line clearly leaves the curve

Mean deceleration from use of tangent using correct coordinates (correct $\Delta \mathrm{v}$ and $\Delta \mathrm{t}$) and answer in range (-)2.5 to (-)2.9 (m si$) \checkmark$

Ignore minus sign
$=15 / 5.5=2.7(3) \mathrm{m} \mathrm{s}^{-2}$
Allow if answer rounds to these values

Use of $F=$ ma using their a with answer
i.e. Force $=1.8 \times 10^{4} \times$ their a from an attempt at a tangent or trying to use suvat equation \checkmark

Answers from best attempts at tangent in range 4.7 to $4.9 \times 10^{4} \mathrm{~N}$
(b) Attempt to estimate area under the graph \checkmark

$$
\text { Use of suvat equation }=0
$$

Correct square count 21 to 2310 mm squares
(525-575 small squares)
OR
distance per square $=2.5 \mathrm{~m}$ or $0.1 \mathrm{~m} \checkmark$
For attempt to find area using trapezium rule expect use of 1 s intervals for this mark

Value in range 50 m to 60 m and conclusion
that escape lane would be long enough $\sqrt{ }$
(c) KE of lorry :
to KE of gravel (as it is pushed aside/moved) $\sqrt{ }$

OR

PE of gravel (as it may be ejected upwards) $\sqrt{ }$
Ignore losses due to friction
Not KE of the ground
transfer to thermal energy /internal energy/heating of gravel /ground/lorry

OR

work done on the gravel/vehicle increasing internal energy/raising temperature $\sqrt{ }$ Must refer to what is heated
(d) Appreciates that KE converted into PE

OR

May be stated or by attempt to use of $m g h=1 / 2 m v^{2}$

OR

Calculates initial KE of lorry $1 / 21.8 \times 10^{4} \times 17.5^{2}=2.76 \times 10^{6}(\mathrm{~J}) \checkmark$

Height needed in escape lane $=2.76 \times 10^{6} /\left(1.8 \times 10^{4} \times 9.81\right)=15.6 \mathrm{~m}$

OR

Length of lane required $=15.6 / \sin 25=37 \mathrm{~m}$ (compare with 85 m)

OR

vertical height of ramp $=35.9 \mathrm{~m}$ (compare with height needed 15.6 m)
OR
maximum change in PE possible $=85 \sin 25 \times 9.81 \times 1.8 \times 10^{4}=6.3 \times 10^{6}(\mathrm{~J})$
(compare with initial KE) \checkmark
Allow max 2 if height $=85 \tan 25$
or length of lane $=15.6 / \tan 25$
i.e. allow these incorrect values when drawing conclusion

Comparison and conclusion that escape lane would be long enough. This must follow from correct working \checkmark

Deceleration produced by slope $=9.8(1)$ sin 25 or
4.15 (4.1 or 4.2) $\mathrm{m} \mathrm{s}^{-2}$ seen $\sqrt{ }$

Distance to stop from $v^{2}=2$ as give $s=37 \mathrm{~m}$ (compare with 85 m) \checkmark
Arriving at 37 m gets first two marks

OR

Minimum deceleration needed $=17.5^{2} / 2 \times 85=1.8 \mathrm{~m} \mathrm{~s}^{-2}$ (compare with $4.15 \mathrm{~m} \mathrm{~s}^{-2}$)
Comparison and conclusion that escape lane would be long enough This must follow from correct working $\sqrt{ }$
(e) The straight road of uniform gradient because:

The deceleration (condone acceleration) is uniform \checkmark
with the gravel the initial deceleration is larger/may vary \checkmark
Travelling through gravel could make the vehicle unstable/bounce erratically(owtte) \checkmark
Gravel because:
On the ramp the lorry would roll backwards after stopping (as it has no brakes) Do not allow deceleration less when on gravel(It is greater initially) Do not allow answers that (average) force using gravel lane is less than decelerating force on the ramp (due to increased stopping distance or stopping time)
Or because stopping time is longer
2. (a) $\mathrm{E}_{\mathrm{k}} \mathrm{E}_{\mathrm{p}}$ or $v=\sqrt{2 g h} \checkmark$
$=\sqrt{2 \times 9.81 \times 90}$
$=42.0\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \checkmark$
First mark for realising energy transformation from GPE to KE. Second mark for correct answer.
(b) calculation of area of pipe $\left(=0.0833 \mathrm{~m}^{2}\right) \checkmark$
radius $=\sqrt{\frac{0.0833}{\pi}}=0.16(\mathrm{~m}) \checkmark$
(c) mass of water / s = 3500 kg \checkmark
energy available per second $=0.5 \times 3500 \times\left(42^{2}-12^{2}\right) \boldsymbol{J}$
$=2.8 \checkmark \mathrm{MW} \sqrt{ }$
(d) heat / mechanical friction in turbines \checkmark
friction at walls of pipes / turbulence \checkmark
electrical heating in wires \checkmark
Do not allow (friction) bald.
Seat of loss must be clear.
Max 2
[10]
3. (a) Max GPE of block $=\mathrm{Mgh}=0.46 \times 9.81 \times 0.63=2.84 \mathrm{~J} \checkmark$ The first mark is for working out the GPE of the block

1

Initial KE of block $=1 / 2 \mathrm{Mv}^{2}=2.84 \mathrm{~J}$
Initial speed of block $v^{2}=(2 \times 2.84) / 0.46$
$\mathrm{v}=3.51 \mathrm{~ms}^{-1} \checkmark$
The second mark is for working out the speed of the block initially
momentum lost by pellet $=$ momentum gained by block
$=\mathrm{Mv}=0.46 \times 3.51=1.61 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \checkmark$
The third mark is for working out the momentum of the block (and therefore pellet)

Speed of pellet $=1.58 / \mathrm{m}=1.58 / 8.8 \times 10^{-3}=180 \mathrm{~ms}^{-1}(183) \checkmark$
The final mark is for the speed of the pellet

At each step the mark is for the method rather than the calculated answer
Allow one consequential error in the final answer
(b) As pellet rebounds, change in momentum of pellet greater and therefore the change in momentum of the block is greater \checkmark

Ignore any discussion of air resistance

Initial speed of block is greater \checkmark
(Mass stays the same)
Initial KE of block greater \checkmark

And therefore steel method unlikely to produce accurate results.
4. (a) (i) $\quad(a=(v-u) / t)$

$$
\begin{aligned}
& =27.8(-0) / 4.6=6.04 \checkmark \\
& =\underline{6.0}\left(\mathrm{~ms}^{-1}\right) \checkmark \\
& \quad \text { no need to see working for the mark } \\
& \quad 2 \text { sig fig mark stands alone }
\end{aligned}
$$

(b) (forward force would have to) increase \checkmark
air resistance / drag increases (with speed) \checkmark
driving / forward force must be greater than resistive / drag force \checkmark
no mark for wind resistance
(so that) resultant / net force stayed the same / otherwise the resultant / net force would decrease \checkmark
(c) horizontal force arrows on both wheels towards the right starting where tyre meets road or on the axle labelled driving force or equivalent \checkmark
ignore the actual lengths of any arrows
ignore any arrows simply labelled 'friction'
a horizontal arrow to the left starting anywhere on the vehicle labelled drag / air resistance
no mark for wind resistance, resistance or friction force
the base of an arrow is where the force is applied
(d) $(F=P / v)$
= $22000 / 55 \checkmark$ Condone $22 / 55$ for this mark
$=400 \checkmark(\mathrm{~N})$
[11]
5. (a) (i) use of $\left(s=\frac{1}{2} g t^{2}\right) \quad$ OR $\quad t^{2}=2 s / g \quad \checkmark$
$t=\sqrt{ } \frac{2 \times 1.2}{9.81} \sqrt{ }$
$=0.49(0.4946 \mathrm{~s}) \checkmark$ allow 0.5 do not allow 0.50
Some working required for full marks. Correct answer only gets 2
(ii) $\quad(s=v t)$
$=8.5 \times 0.4946 \checkmark$ ecf ai
$=4.2 \mathrm{~m} \checkmark$ (4.20) ecf from ai
(b) (i) $\quad\left(s=\frac{1}{2}(u+v) t\right)$
$t=\frac{2 s}{u(+v)}$ or correct sub into equation above \checkmark
$=\frac{2 \times 0.35}{8.5}=8.2 \times 10^{-2}(\mathrm{~s}) \checkmark(0.0824)$ allow 0.08 but not 0.080 or 0.1

Allow alternative correct approaches
(ii) $a=(v-u) / t$ OR correct substitution OR $\mathrm{a}=103 \mathrm{~V}$ $\left.(=-8.5) / 8.24 \times 10^{-2}=103.2\right)$
$(F=m a=) 75 \times(103.2) \checkmark$ ecf from bi for incorrect acceleration due to arithmetic error only, not a physics error (e.g. do not allow $\mathrm{a}=8.5$. Use of g gets zero for the question.
$=7700 \mathrm{~N} \checkmark$ (7741) ecf (see above)
Or from loss of KE
Some working required for full marks. Correct answer only gets 2
[10]

