

Work and Power

Mark Scheme

Time available: 45 minutes Marks available: 32 marks

Mark schemes

1. (a) Attempt to use work done $=$ force \times distance with either incline work or resistance work or both \checkmark_{1}

Work done by flywheel
$=\left[\left(1.46 \times 10^{4} \times 9.81 \times \sin 5^{\circ}\right)+1.18 \times 10^{3}\right] \times 500 \sqrt{2}_{2}$
$\left(=6.83 \times 10^{6} \mathrm{~J}\right)$
$1 / 2 I \omega^{2}=6.83 \times 10^{6}$ giving $\omega=468\left(\mathrm{rad} \mathrm{s}^{-1}\right) \checkmark_{3}$
MP1: award mark for valid attempt to calculate
$m g h$ or $F \times s$ or both
$m g h=6.24 \times 10^{6} \mathrm{~J}$
$F \times s=5.9 \times 10^{5} \mathrm{~J}$
MP2 for correct calculation of work done
MP3 for using their work done and $1 / 2 I \omega^{2}$ to calculate ω ECF for $\sqrt{ }{ }_{3}$
(b) $\quad \checkmark_{1}$ for idea of use of flywheel as brake
\checkmark_{2} for idea of storing and reusing this energy
E_{p} change of tram can be converted to E_{k} of flywheel so less energy transferred to brakes/brakes last longer/tram will not reach a high speed \checkmark_{1}
OR
Energy otherwise dissipated/lost in brakes can be fed back to flywheel \checkmark_{1}

Fly wheel is charged/stores energy and energy can be used for later acceleration/driving \checkmark_{2}
OR
Fly wheel is charged/stores energy and at next stop less recharging energy will be needed. $\sqrt{ } 2$

Give two marks if both points covered in their answer to part 1 Treat as neutral answers in terms of providing a smoother ride or less wear on parts due to connecting and reconnecting flywheel.

If no other marks are given, allow 1 MAX for a correct reference to regenerative braking.
(c) The mark scheme gives some guidance as to what statements are expected to be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2) and 5 or 6 mark (L3) answer.
Guidance provided in section 3.10 of the 'Mark Scheme Instructions' document should be used to assist in marking this question.

Mark	Criteria
6	The factors which affect E_{k} and all three areas of shape, material and design for high ω will be covered in some detail. 6 marks can be awarded even if there is an error and/or if parts of one aspect are missing.
5	The factors which affect E_{k} and all three areas will be covered, at least two in detail.
4	Two areas successfully discussed, or one discussed and two others covered partially. Whilst there will be gaps, there should only be an occasional error.
3	One area discussed and one discussed partially, or all three covered partially. There are likely to be several errors and omissions in the discussion.
2	Only one area discussed or makes a partial attempt at two areas.
1	None of the three areas covered without significant error.
0	No relevant analysis.

examples of the points made in the response

- $\quad E_{k}$ proportional to ω^{2}
- $\quad E_{k}$ proportional to I
- for same mass of tram I or ω increased but not mass of flywheel

Shape

- $\quad I$ depends on mass and distribution of mass around axis
- $\quad\left(I=\sum m r^{2}\right.$ so) arrange more m at outer edge of flywheel
- by using heavy rim and spokes/thin centre web
- increase radius

Material

- use higher density material at rim
- use material of higher tensile strength / breaking stress
- for higher speeds without bursting/to withstand rotational/centripetal stresses
- eg titanium, CFRP

Design for high ω - increase ω by:

- reduce friction at bearings
- use lubrication or roller bearings/air bearings/magnetic bearings
- smooth outer surfaces / encase in vacuum
- small increase in ω gives large increase in E_{k} (because ω^{2})

Also allow

- sketches which convey correct info clearly
- use of 'depends on' for 'proportional to'
- need for perfect balance
- gyroscopic effects

2. (a) (i) $8.3 \mathrm{rev}=8.3 \times 2 \pi \mathrm{rad} \checkmark \quad$ (= 52 rad$)$

Use of $\omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta$
$0=6.4^{2}+2 \times \alpha \times 52$
If eqtn(s) of motion used correctly with $\theta=8.3$ (giving $\alpha=2.5$), give 2 out of first 3 marks.

OR use of $\theta=1 / 2\left(\omega_{1}+\omega_{2}\right) t$ leading to $t=16.25 \mathrm{~s}$ and $\omega_{2}=\omega_{2}+\alpha t$
$\alpha=(-) 0.39 \quad \checkmark \quad \mathrm{rad} \mathrm{s}^{-2}$
Accept: s^{-2}
Unit mark is an independent mark
(ii) $T=l \alpha$
$=8.2 \times 10^{-3} \times 0.39=3.2 \times 10^{-3} \mathrm{~N} \mathrm{~m} \checkmark$
Give CE from a i
(b) (i) $\quad(W=T \theta$ or $W=T \omega t)$ where $\theta=0.78 \times 270 \sqrt{ }(=210 \mathrm{rad})$

$$
=3.2 \times 10^{-3} \times 210=0.67 \mathrm{~J} \checkmark
$$

Give CE from a ii
(b) (ii) ratio $=\frac{900 \times 270}{0.67}$ or $\frac{2.4(3) \times 10^{5}}{0.67}$

$$
=3.6 \times 10^{5}
$$

$C E$ from b i. Must be in the form: number $\times 10^{5}$ with number calculated correctly.
900×270 or $2.4(3) \times 10^{5}$ or equivalent must be seen for $1^{\text {st }}$ mark 1 mark for only writing 3.6×10^{5}
3. (a) (i) $\quad \begin{aligned} & T=F r=7.0 \times 0.075 \\ & = \\ & =\end{aligned} \quad .53(1) \mathrm{Nm}(\mathbf{1})$
(ii) $P=T \omega$
$=0.53 \times 120=64 \mathrm{~W}(1)$
2

1
(b) use of equation(s) of motion:
$\theta=1 / 2(120+0) \times 6.2=370 \mathrm{rad}(1)$
$370 / 2 \pi=59$ rotations (1)
2
[5]
4.
(a) $\quad \omega_{1}=\frac{2 \pi}{18}=3.5 \times 10^{-1}\left(\mathrm{rad} \mathrm{s}^{-1}\right)(1)$
$\theta=\frac{\left(\omega_{1}+\omega_{2}\right) t}{2}$ gives $t=\frac{2 \times 3 \times 2 \pi}{3.5 \times 10^{-1}}$
$t=108$ (or 110) s (1)
(b) $\quad \alpha\left(=\frac{\omega_{1}-\omega_{2}}{t}\right)=\frac{(-) 3.5 \times 10^{-1}}{108}=(-) 3.2 \times 10^{-3}\left(\mathrm{rad} \mathrm{s}^{-2}\right)(1)$
$T(=I \alpha)=8 \times 10^{3} \times 3.2 \times 10^{-3}=26 \mathrm{Nm}(1)$
(c) $\quad P(=T \omega)(1)=26 \times 3.5 \times 10^{-1}=9 \mathrm{~W}(1)$

