M1.(a) ${ }_{93}^{239} \mathrm{~Np} \rightarrow{ }_{94}^{239} \mathrm{Pu}+{ }_{(-1)}^{(0)} \beta^{-}+\left({ }_{(0)}^{(0)} \bar{v}\right.$ \checkmark
First mark for one anti-neutrino or one beta minus particle in any form e.g. e-. If subscript and superscripts are given for these they must be correct but ignore the type of neutrino if indicated.
The second mark is for both particles and the rest of the equation.
Ignore the full sequence if it is shown but the Np to Pu must be given separately for the mark.
(b) (i) $\quad T_{1 / 2} 2.0 \rightarrow 2.1 \times 10^{5} \mathrm{~s} \checkmark$
then substitute and calculate
$\lambda=\ln 2 / T_{1 / 2} \quad \checkmark$
$T_{1 / 2}$ may be determined from graph not starting at zero time.
Look for the correct power of 10 in the half-life - possible AE.
Or
(substitute two points from the graph into $A=A_{0} \mathrm{e}^{-\lambda t}$)
e.g. $0.77 \times 10^{12}=4.25 \times 10^{12} \exp \left(-\lambda \times 5 \times 10^{5}\right) \checkmark$
then make λ the subject and calculate \checkmark
(the rearrangement looks like
$\lambda=\left[\ln \left(A_{0} / A\right)\right] / t$
or $\left.\lambda=-\left[\ln \left(A / A_{0}\right)\right] / t\right)$
Allow the rare alternative of using the time constant of the decay
$A=A_{o} \exp \left(-t / t_{t c}\right)$
from graph $t_{t c}=2.9 \rightarrow 3.1 \times 10^{5} \mathrm{~s}$,
$\lambda=1 / t_{c}=3.4 \times 10^{-6} \mathrm{~s}^{-1}$
No CE is allowed within this question.
both alternatives give
$\lambda=3.3 \rightarrow 3.5 \times 10^{-6} \mathrm{~s}^{-1}$
For reference
$T_{1 / 2}=2.0 \times 10^{5}$ s gives
$\lambda=3.5 \times 10^{-6} \mathrm{~s}^{-1}$ and
$T_{1 / 2}=2.1 \times 10^{5} s$ gives
$\lambda=3.3 \times 10^{-6} \mathrm{~s}^{-1}$.
(ii) (using $A=N \lambda$
$\left.N=0.77 \times 10^{12} / 3.4 \times 10^{-6}=2.2(6) \times 10^{17}\right)$
allow $2.2 \rightarrow 2.4 \times 10^{17}$ nuclei \checkmark
A possible route is find $N_{o}=A_{o} / \lambda$
then use $N=N_{o} e^{-\lambda t}$.
Condone lone answer.
(c) (i) uranium (- 235 captures) a neutron (and splits into 2 smaller nuclei / fission fragments) releasing more neutrons

First mark for uranium + neutron gives more neutrons.
Ignore which isotope of uranium is used.
(at least one of) these neutrons go on to cause further / more splitting / fissioning (of uranium-235) \checkmark

Second mark for released neutron causes more fission. The word 'reaction \square may replace 'fission \square here provided 'fission / splitting of uranium \square is given somewhere in the answer.
(ii) Escalate if clip shows critical mass in the question. the moderator slows down / reduces the kinetic energy of neutrons so neutrons are absorbed / react / fission (efficiently) by the uranium / fuel
owtte
Possible escalation.
(iii) neutrons are absorbed / collide with (by the nuclei in the shielding) Second mark is only given if neutrons appear somewhere in the answer.
converting the nuclei / atoms (of the shielding) into unstable isotopes (owtte)

No neutrons = no marks.
Making it neutron rich implies making them unstable.

M2.(a) the amount of energy required to separate a nucleus into its separate neutrons and protons / nucleons (or energy released on formation of a nucleus
from its separate neutrons and protons / constituents \checkmark)
$1^{\text {th }}$ mark is for correct energy flow direction
$2^{\text {nd }}$ mark is for binding or separating nucleons (nucleus is in the question but a reference to an atom will lose the mark) ignore discussion of SNF etc
both marks are independent
(b) (i) $2{ }_{0}^{1} \mathrm{n}$ or ${ }_{0}^{1} \mathrm{n}+{ }_{0}^{1} \mathrm{n}$
must see subscript and superscripts
(ii) binding energy of U $=235 \times 7.59 \checkmark(=1784(\mathrm{MeV}))$ binding energy of Tc and In $=112 \times 8.36+122 \times 8.51$
(= 1975 (MeV))
energy released $(=1975-1784)=191(\mathrm{MeV}) \checkmark$ (allow 190 MeV$)$
$1^{\text {st }}$ mark is for 235×7.59 seen anywhere
$2^{\text {nd }}$ mark for $112 \times 8.36+122 \times 8.51$ or 1975 is only given if there are no other terms or conversions added to the equation (ignore which way round the subtraction is positioned)
correct final answer can score 3 marks
(iii) energy released

```
\(=191 \times 1.60 \times 10^{-13}\)
( \(=3.06 \times 10^{-11} \mathrm{~J}\) )
loss of mass ( \(=E / c^{2}\) )
\(\left.=2.91 \times 10^{-11} /\left(3.00 \times 10^{8}\right)^{2}\right)\)
\(=3.4 \times 10^{-28}(\mathrm{~kg}) \checkmark\)
or
\(=191 / 931.5 u \quad(=0.205 \mathrm{u})\)
\(=0.205 \times 1.66 \times 10^{-27}(\mathrm{~kg})\)
\(=3.4 \times 10^{-28}(\mathrm{~kg}) \checkmark\)
allow CE from (ii)
working must be shown for a CE otherwise full marks can be
given for correct answer only
note for CE
answer \(=\left(\right.\) ii) \(\times 1.78 \times 10^{-30}\)
( \(2.01 \times 10^{-27}\) is a common answer)
```

(c) (i) line or band from origin, starting at 45° up to Z approximately $=20$ reading $Z=80, N=110 \rightarrow 130 \checkmark$
initial gradient should be about 1 (ie $Z=20 ; N=15 \rightarrow 25$) and overall must show some concave curvature. (Ignore slight waviness in the line) if band is shown take middle as the line if line stops at $N>70$ extrapolate line to $N=80$ for marking
(ii) fission fragments are (likely) to be above / to the left of the line of stability \checkmark
fission fragments are (likely) to have a larger N / Z ratio than stable nuclei
or
fission fragments are neutron rich owtte and become neutron or β emitters
ignore any reference to α emission a candidate must make a choice for the first two marks stating that there are more neutrons than protons is not enough for a mark ${ }^{1{ }^{\text {st }}}$ mark reference to graph $2^{n d}$ mark - high N / Z ratio or neutron rich 3^{*} mark beta minus note not just beta

M3.
$\left({ }_{76}^{206} \mathrm{X} \rightarrow{ }_{82}^{206} \mathrm{~Pb}+\beta \times{ }_{-1}^{0} \beta+\beta \times \overline{v_{e}}\right)$
(a)

$$
\beta=6
$$

(b) (i) the energy required to split up the nucleus
into its individual neutrons and protons/nucleons
(or the energy released to form/hold the nucleus
from its individual neutrons and protons/nucleons \checkmark)
(ii) $7.88 \times 206=1620 \mathrm{MeV} \checkmark$ (allow 1600-1640 MeV)
(c) (i) U, a graph starting at 3×10^{22} showing exponential fall passing through 0.75×10^{22} near 9×10^{9} years

Pb , inverted graph of the above so that the graphs cross at 1.5×10^{22} near 4.5×10^{9} years \checkmark
(ii) (u represents the number of uranium atoms then)
$\frac{u}{3 \times 10^{22}-u}=2$
$u=6 \times 10^{22}-2 u$
$u=2 \times 10^{22}$ atoms
(iii) (use of $N=N_{0} \mathrm{e}^{- \text {** }}$)

$$
\begin{aligned}
& 2 \times 10^{22}=3 \times 10^{22} \times \mathrm{e}^{-3 t} \\
& t=\ln 1.5 / \lambda \\
& \text { (use of } \lambda=\ln 2 / t_{12} \text {) } \\
& \lambda=\ln 2 / 4.5 \times 10^{9}=1.54 \times 10^{-10} \\
& t=2.6 \times 10^{9} \text { years } \checkmark \text { (or } 2.7 \times 10^{9} \text { years) }
\end{aligned}
$$

M4. (a) graph passes through $N=10 / 11$ when $Z=10$ and N increases as Z increases (1)
$N=115 \rightarrow 125$ when $Z=80$ and graph must bend upwards (1)
(b) (i) W at $Z>60$ just (within one diagonal of a square) below line (1)
(ii) X just (within one diagonal of a square) above line (1)
(iii) \mathbf{Y} just (within one diagonal of a square) below line (1)
(c) working showing the change due to emission of four α particles (1) four β^{-}particles (1)
(d) Any two from the following list of processes:
β^{+}
describe the changes to N (up by 1) and Z (down by 1)
[or allow p change to n]
α
move closer to line of stability
[or state the proton to neutron ratio is reduced]
p
only if nuclide is very proton rich
[or electrostatic repulsion has to overcome the strong nuclear force]
[or highly unstable]
[or rare process]
e^{-}capture
describe the changes to N (up by 1) and Z (down by 1)
allow p changes to n
marking: listing two processes (1)
discussing each of the two processes (1) (1)

M5.(a) (i) alpha (1)
(ii) two different track lengths (1)
short range particles have lower energy than long range particles (1) particles in each range have same energy (1)
(b) (i) $\quad{ }_{94}^{239} \mathrm{Pu} \rightarrow{ }_{92}^{235} \mathrm{U}+\alpha(1)(+Q)$
(ii) ${ }_{92}^{235} \mathrm{U} \rightarrow{ }_{90}^{231} \mathrm{Th}+\alpha(1)(+Q)$
(iii) U-235 (1)
because of the inverse relationship
between half-life and alpha particle energy (1)
(iv) because the Th-90 nucleus is neutron-rich compared with U-235 [or Pu-239] (1)

