Q1.(a) Scattering experiments are used to investigate the nuclei of gold atoms.

In one experiment, alpha particles, all of the same energy (monoenergetic), are incident on a foil made from a single isotope of gold.

| (i) | State the main interaction when an alpha particle is scattered by a gold |
|-----|--------------------------------------------------------------------------|
|     | nucleus.                                                                 |

| <br> | <br> |
|------|------|
| <br> | <br> |

(1)

(1)

(ii) The gold foil is replaced with another foil of the same size made from a mixture of isotopes of gold. Nothing else in the experiment is changed.

Explain whether or not the scattering distribution of the monoenergetic alpha particles remains the same.

| <br> | <br> |
|------|------|
|      |      |
| <br> | <br> |
|      |      |
|      |      |
| <br> | <br> |

(b) Data from alpha-particle scattering experiments using elements other than gold

allow scientists to relate the radius R, of a nucleus, to its nucleon number, A. The graph shows the relationship obtained from the data in a graphical form, which obeys



(i) Use information from the graph to show that  $r_0$  is about 1.4 × 10<sup>-15</sup> m.

| (ii) | Show that the radius                                    | $^{51}$ of a $^{23}V$ nucleus is about 5 × 10 $^{-15}$ m.                                        | (1)                    |
|------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------|
|      |                                                         |                                                                                                  | (2)                    |
|      | alculate the density of a<br>ate an appropriate unit fo |                                                                                                  | (2)                    |
|      |                                                         |                                                                                                  |                        |
|      | densit                                                  | y unit                                                                                           | (3)<br>(Total 8 marks) |
|      | ne following is equal to                                | radius of a nucleus of <sup>125</sup> <sub>51</sub> Sb radius of a nucleus of <sup>64</sup> Zn ? |                        |

- **B** 1.25
- C 1.33
- **D** 1.40

(Total 1 mark)

- Q3. The first artificially produced isotope, phosphorus  $^{30}_{15}$  P, was formed by bombarding an aluminium isotope,  $^{27}_{13}$  Al aluminium isotope,  $^{13}_{13}$  , with an  $\alpha$  particle.
  - (a) Complete the following nuclear equation by identifying the missing particle.

$$^{27}_{13}AI + \alpha \rightarrow ^{30}_{15}P + \dots$$

(1)

(b) For the reaction to take place the  $\alpha$  particle must come within a distance, d, from the centre of the aluminium nucleus. Calculate d if the nuclear reaction occurs when the  $\alpha$  particle is given an initial kinetic energy of at least 2.18 × 10<sup>-12</sup> J.

The electrostatic potential energy between two point charges  $Q_1$  and  $Q_2$  is equal

to  $4\pi \epsilon_0 r$  where r is the separation of the charges and  $\epsilon_0$  is the permittivity of free space.

| answer = | m |                 |
|----------|---|-----------------|
|          |   | (3)             |
|          |   | (Total 4 marks) |

| Q4. |     | (a) Calculate the radius of the $^{238}_{\  \   92}$ U nucleus. $r_{\scriptscriptstyle 0} = 1.3 \times 10^{\scriptscriptstyle -15} \ m$                                                                                       |    |
|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     |     |                                                                                                                                                                                                                               | (2 |
|     | (b) | At a distance of 30 mm from a point source of $^{\gamma}$ rays the corrected count rate is $C$ . Calculate the distance from the source at which the corrected count rate is 0.10 $C$ , assuming that there is no absorption. |    |
|     |     |                                                                                                                                                                                                                               |    |
|     |     |                                                                                                                                                                                                                               | (2 |
|     | (c) | The activity of a source of $\beta$ particles falls to 85% of its initial value in 52 s. Calculate the decay constant of the source.                                                                                          |    |
|     |     |                                                                                                                                                                                                                               |    |

**Q5.**The radius of a nucleus, R, is related to its nucleon number, A, by

$$R = r_0 A^{1/3}$$
, where  $r_0$  is a constant.

The table lists values of nuclear radius for various isotopes.

| Element | <i>R</i> /10 <sup>-15</sup> m | А  |  |
|---------|-------------------------------|----|--|
| carbon  | 2.66                          | 12 |  |
| silicon | 3.43                          | 28 |  |
| iron    | 4.35                          | 56 |  |

| tin  | 5.49 | 120 |  |
|------|------|-----|--|
| lead | 6.66 | 208 |  |

| (a) | Use the data to plot a straight line graph and use it to estimate the value of $r_{\scriptscriptstyle 0}$ |
|-----|-----------------------------------------------------------------------------------------------------------|
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |



(b) Assuming that the mass of a nucleon is  $1.67 \times 10^{-27}$  kg, calculate the approximate density of nuclear matter, stating **one** assumption you have made.

(8)

|                                         | (4)   |
|-----------------------------------------|-------|
| (Total 12 ma                            | irks) |
| (************************************** | -,    |

Page 9