M1.B

M3.B

M4.A

M5. A

M6. A

M7. A

M8. $\quad \mathrm{C}$

M9. $\quad \mathrm{C}$

M10.(a) (i) mass per sec ($=$ density \times vol per sec) $=1000 \times 1.4$ (1) $=1400 \mathrm{~kg}\left(\mathrm{~s}^{-1}\right)$
(ii) loss of E_{p} per sec $\left(=\frac{m g h}{t}\right)=1400 \times 9.8 \times 750$ (1)

$$
=1.0 \times 10^{7} \mathrm{~J}\left(\mathrm{~s}^{-1}\right)(1)\left(1.03 \times 10^{7} \mathrm{~J} \mathrm{~s}^{-1}\right)
$$

(allow C.E. for value of mass per sec from (i))
(iii) efficiency $\left(=\frac{\text { power output }}{\text { loss of } E_{p} \text { per second }}\right)=\frac{2.0 \times 10^{8}}{1.0 \times 10^{7}}(1)$
(allow C.E. for value (ii))
(b) (i) (use of $P=I V$ gives) $I_{\mathrm{ms}}=\frac{2.0 \times 01^{e}}{25 \times 10^{3}}$

$$
\begin{equation*}
=80 \mathrm{~A}(1) \tag{1}
\end{equation*}
$$

Page 3
(ii) power output $=(0.95 \times$ power input $)=0.95 \times 2.0(\mathrm{MW})=1.9(\mathrm{MW})$
$I=\frac{1.9(\mathrm{MW})}{275(\mathrm{kV})}=6.9 \mathrm{~A}(1)$
[or I for 100% efficiency $\left(=\frac{2 \times 10^{6}}{275 \times 10^{3}}\right)=7.3$ (A) (1)
I for 95% efficiency $=95 \%$ of $7.3=6.9 \mathrm{~A}]$
[10]

M11. (a) $\quad R=\rho L / A$
C1
$A=2.0 \times 10^{-6}\left(\mathrm{~m}^{2}\right)$ or $\pi\left(0.8 \times 10^{-3}\right)^{2}$ seen in equation (condone $\pi\left(1.6 \times 10^{-3}\right)^{2}$ or 8.04×10^{-6} seen)

C1

$L=2900 \mathrm{~m}, 2940 \mathrm{~m}, 2960$ or 3000 m
A1
(b) resistance leads to loss of heat/energy/power or $l^{2} \mathrm{R}$ loss or voltage drop (across cable)

B1
lower current lowers loss of heat/energy/power or reduces voltage drop

B1
ac can be transformed (to lower transmission current)
B1

M12.(a) product of flux and number of turns
Wb or equivalent
(b) changing primary magnetic field due to alternating voltage (applied to primary) varying flux links with secondary B1
induced emf \sum rate of change of flux linkage
$N_{s} N_{P}$ so less voltage on secondary
(c) (i) equation or correct substitution
15.3 V

C1

$$
0
$$

.
(ii) not just "heating" or "heat loss"

