an tra	mp rated at 12 V 60 W is connected to the secondary coil of a step-down transfor d is at full brightness. The primary coil is connected to a supply of 230 V. The insformer is 75% efficient. hat is the current in the primary coil?	mer
Α	0.25 A	
В	0.35 A	
С	3.75 A	
D	5.0 A	
Th	insformer has 1150 turns on the primary coil and 500 turns on the secondary coil is primary coil draws a current of 0.26 A from a 230 V ac supply. The current in condary coil is 0.50 A . What is the efficiency of the transformer?	
Α	42%	
В	50%	
С	84%	
D	100%	(Total 1 mark
	ch one of the following statements concerning power losses in a transformer is correct?	
Po	ower losses can be reduced by	
Α	laminating the core.	
В	using high resistance windings.	
С	using thick wire.	
D	using a core made of special iron alloys which are easily magnetised.	(Total 1 mark

Q4.A transformer with 3000 turns in its primary coil is used to change an alternating pd from an rms value of 240 V to an rms value of 12 V.

When a 60 W, 12 V lamp is connected to the secondary coil, the lamp lights at normal brightness and a rms current of 0.26 A passes through the primary coil.

Which line, **A** to **D**, in the table gives correct values for the number of turns on the secondary coil and for the transformer efficiency?

	number of turns on the secondary coil	efficiency
Α	150	96%
В	60 000	96%
С	150	90%
D	60 000	90%

(Total 1 mark)

- **Q5.** Which one of the following would **not** reduce the energy losses in a transformer?
 - A using thinner wire for the windings
 - **B** using a laminated core instead of a solid core
 - **C** using a core made from iron instead of steel
 - **D** using a core that allows all the flux due to the primary coil to be linked to the secondary coil

(Total 1 mark)

- **Q6.** Which one of the following is **not** a cause of energy loss in a transformer?
 - A good insulation between the primary and secondary coil
 - **B** induced currents in the soft iron core
 - **C** reversal of magnetism in the soft iron core
 - **D** resistances in the primary and secondary coil

(Total 1 mark)

Q7. The primary coil of a step-up transformer is connected to a source of alternating pd. The secondary coil is connected to a lamp.

Which line, **A** to **D**, in the table correctly describes the flux linkage and current through the secondary coil in relation to the primary coil?

	secondary magnetic flux linkage primary magnetic flux linkage	secondary current primary current
Α	>1	<1
В	<1	<1
С	>1	>1
D	<1	>1

(Total 1 mark)

Q8.	The p	A transformer has 1200 turns on the primary coil and 500 turns on the seconda primary coil draws a current of 0.25 A from a 240 V ac supply. If the efficiency of sformer is 83%, what is the current in the secondary coil?	
	Α	0.10 A	
	В	0.21 A	
	С	0.50 A	
	D	0.60 A	
Q9.	200 t	A 230 V, 60 W lamp is connected to the output terminals of a transformer which turn primary coil and a 2000 turn secondary coil. The primary coil is connected burce with a variable output pd. The lamp lights at its normal brightness when the ary coil is supplied with an alternating current of 2.7 A.	to an
	What	t is the percentage efficiency of the transformer?	
	Α	3%	
	В	10%	
	С	97%	
	D	100%	(Total 1 mark)

Q10.A hydroelectric power station has a power output of 2.0 MW when water passes through its turbines at a rate of 1.4 m³ s⁻¹. The water is supplied from a reservoir which is 750 m above the power station turbines, as shown in the diagram below.

density of water = 1000 kg m⁻³

(a))	Ca	cul	lat	е	

(i)

(ii)

(iii)

the mass of water passing through the turbines each second,
the loss of potential energy per second of the water flowing between the reservoir and the power station turbines,
reservoir and the power station turbines,
reservoir and the power station turbines,
reservoir and the power station turbines,

(6)

the efficiency of the power station.

(b)	diffe	turbines drive generators that produce alternating current at an rms potential rence of 25 kV which is then stepped up to an rms potential difference of 275 kV eans of a transformer.	
	(i)	Calculate the rms current supplied by the generators to the transformer when the power output of the generators is 2.0 MW.	
	/ii\	The transformer has an efficiency of 95%. Calculate the output current of the	
	(ii)	transformer.	
			(4)
		(Total 10 m	iarks)
	<i>(</i>)		
Q11.	(a) resis	Calculate the length of copper wire that has a diameter of 1.6 × 10 $^{\circ}$ m and a tance of 25 Ω .	
	resis	tivity of copper = 1.7 × 10- Ω m	
		Length of wire	(3)

(T - 1 - 1 .		
(Total 6	(1)	
	hat is meant by the term <i>magnetic flux linkage</i> . State its unit.	Explain what is meant
	hat is meant by the term <i>magnetic flux linkage</i> . State its unit.	Explain what is meant
	hat is meant by the term <i>magnetic flux linkage</i> . State its unit.	Explain what is meant
	hat is meant by the term <i>magnetic flux linkage</i> . State its unit.	
sed to	in terms of electromagnetic induction, how a transformer may be use	
sed to	in terms of electromagnetic induction, how a transformer may be use	Explain, in terms of el
sed to	in terms of electromagnetic induction, how a transformer may be use	Explain, in terms of el
sed to	in terms of electromagnetic induction, how a transformer may be use	Explain, in terms of el

			(4)
(c)	with	ninidisc player is provided with a mains adapter. The adapter uses a transformer a turns ratio of 15:1 to step down the mains voltage from 230 V. Calculate the output voltage of the transformer.	
	(i)	Calculate the output voltage of the transformer.	(2)
	(ii)	State two reasons why the transformer may be less than 100% efficient.	
		(Total 10 ma	(2) arks)