M1.(a) (i) X must have a <u>negative charge</u> \checkmark

to conserve charge ✓ second mark dependent on first i.e. conserve charge alone scores nothing can gain second mark by showing balanced equation

(ii) X must be a baryon ✓
 to conserve baryon number ✓

here two marks are independent i.e. conserve baryon number alone scores 1 mark can gain second mark by showing balanced equation

2

2

(iii) K⁻: S $\overline{\mathbf{u}}$ OR strange anti-up \checkmark

K⁺: u [¯]s OR up anti-strange ✓

K⁰: d s OR s d OR down anti-strange OR strange anti–down ✓ in each case the symbols or words can be in either order must be a bar over anti – quark can be upper case letters e.g. U

3

 (iv) (strangeness on LHS is -1) strangeness on RHS without X is +2 / strangeness of X is -3 ✓ thus sss OR strangeness on RHS without X is +2 / strangeness of X is -1 ✓ thus sdd ✓ ✓ correct strangeness without X on RHS is minimum working needed for first mark next two marks awarded for correct quark structure

[10]

3

M2.(a) (i) us / up and anti-strange 🗸

In any order Bar must be over s only (ii) 0 / zero / nothing 🗸

1

1

(iii) K⁻ / negative kaon / \overline{us} \checkmark

(b) (i)

classification	K⁺	${\cal V}_{\mu}$	µ⁺
lepton	×	>	>
charged particle	~	×	~
hadron	1	×	×
meson	√	×	×

1 mark for each correct row

3

2

 (ii) conserved: baryon number OR lepton number ✓ not conserved: strangeness / kinetic energy ✓ Mass in either loses mark

(c) (i) neutral pion ✓

Indicated clearly in table in any way e.g. circled or cross. If more than one box used then must be a tick with neutral pion only

1

 (ii) must be neutral / no charge / 0 charge to obey charge conservation OR cannot be baryon to obey conservation of baryon number OR cannot be lepton to obey conservation of lepton number ✓ Can show by using equation and appropriate quantum numbers

[10]

1

M3. (a)	Photon (right-hand box) TO for listing Must state name			
	Weak (nuclear) / weak interaction / weak nuclear interaction / wea	ak force		
	(left-hand box) TO for listing	B1	2	
(b)	Charge / (electric) charge			
	TO for listing any other physical quantity Must be word; do not accept symbol	B1	1	
(c)	Higgs (boson) / Higgs (particle) / Higgs (boson particle) <i>Not graviton</i>			
	Accept Higg / Higs / Hig			
	TO for listing	B1	1	[4]
M4. (a)	pair production 🗸		1	

(b) (energy = 2 × rest mass energy) energy = 2 × 0.510999 = 1.021998 (MeV) ✓ energy = 1.021998 × 1.60 × 10⁻¹³ = 1.64 × 10⁻¹³ J ✓ (3 sig figs ✓) If miss out 2 factor can get CE Can use E=2mc² First mark for full substitution and second mark for answer

- (c) kinetic energy (of electron and positron) ✓ KE of photon gets zero
- (d) (meet an electron and) annihilate ✓
 (converting into two or more) photons ✓ OR gamma rays

[7]

3

1

2

M5. (a)

particle	quark structure	charge	strangeness	baryon number
proton 🗸	uud	+1 🗸	0	1√
sigma⁺	uus	+1	-1 🗸	1 🗸
π⁺ ✓	ud	+1 🗸	0	0

(b) (i) examples: proton, antiquarks √

- (ii) consists of 3 antiquarks ✓
- (iii) same (rest) mass (energy) ✓

difference eg baryon number/charge ✓

1

2

7

1

- M6. (a) photon interacts with (orbital) electron/nucleus/atom ✓
 energy of photon used to create particle antiparticle pair ✓
 to conserve momentum photon needs to interact with interacting particle ✓
 - (b) energy of photon depends on frequency ✓
 if energy/frequency is below a certain value there is not enough energy ✓
 to provide mass/rest energy of particles ✓
 - (c) any two 🗸 🗸

eg charge lepton number baryon number strangeness 3

2

[11]