form	ation	of particle, X .	
		K^- + $p \rightarrow K^+$ + K^0 + X	
(a)	(i)	State and explain whether \boldsymbol{X} is a charged particle.	
			(2)
	(ii)	State and explain whether $old X$ is a lepton, baryon or meson.	
			(2)
	(iii)	State the quark structure of the K^-,K^+ and the $K^0.$	
		K	
		K ⁺	
		K ^o	(2)
			(3)
	(iv)	Strangeness is conserved in the interaction.	
	(14)	Determine, explaining your answer, the quark structure of X .	
			(3)
		(10)	tal 10 marks)

Q1. The equation shows an interaction between a proton and a negative kaon that results in the

Q2. (a)	The p	ositive	e kaon, $K^{\scriptscriptstyle +}$, has a strangeness of +1.	
		(i)	What is the quark structure of the K^{+} ?	
				(1)
		(ii)	What is the baryon number of the $K^{\scriptscriptstyle +}$?	
				(1)
		(iii)	What is the antiparticle of the $K^{\scriptscriptstyle +}$?	
				(1)
	(b)	The	$\mathbf{K}^{\scriptscriptstyle{+}}$ may decay into a neutrino and an antimuon in the following way.	
			$K^{\scriptscriptstyle +} ightarrow u_{\scriptscriptstyle \mu} + \mu^{\scriptscriptstyle +}$	
		(')		

(i) Complete the table using ticks and crosses as indicated in the first row.

Classification	K ⁺	v_{μ}	μ·
lepton	×	√	✓
charged particle			
hadron			
meson			

(3)

(ii) In this decay, charge, energy and momentum are conserved.

Give another quantity that is conserved in this decay and one that is not conserved.

		Cons	served			
		Not o	conserved			
(5)	A 10 0 0	th a n n a	anaible denover of the I	Ztio oboveni	n the fellowing equ	tion
(c)			ossible decay of the I	S IS SHOWN I	n the following equ	iauon,
		→ π ⁺ +				
	(i)	ldent	tify X by ticking one l	oox from the	following list. 	
			electron			
			muon			
			negative pion			
			neutral pion			
			neutrino			
			neutron			
			positron		7	
	(ii)	Give	one reason for your	choice in par	t (i).	
						(Total 10 mark
						·
(a) C			table to show the for particles.	ur fundament	tal forces and their	corresponding

fundamental force	corresponding exchange particle

Page 4

strong nuclear	gluon
electromagnetic	
	$W^{\dagger}W^{-}Z^{0}$
gravitational	graviton

(2) (b) Name the physical quantity that a particle must have for the electromagnetic force to act on it. (1) (c) Name the particle believed to be responsible for mass. (Total 4 marks) Q4. Under certain circumstances it is possible for a photon to be converted into an electron and a positron. (a) State what this process is called. (1) A photon must have a minimum energy in order to create an electron and a (b) positron.

Calculate the minimum energy of the photon in joules. Give your answer to an

appropriate number of significant figures.

			(3)
((c)	A photon of slightly higher energy than that calculated in part (b) is converted into an electron and a positron.	
		State what happens to the excess energy.	
			(1)
((d)	Describe what is likely to happen to the positron shortly after its creation.	
			(0)

minimum energy = J

Q5. (a) The table gives information about some fundamental particles.

Complete the table by filling in the missing information.

particle	quark structure	charge	strangene	baryon number
	uud		0	
Sigma ⁺	uus	+ 1		
	ud		0	0

(7)

(Total 7 marks)

- (b) Each of the particles in the table has an antiparticle.
 - (i) Give **one** example of a baryon particle **and** its corresponding antiparticle.

			particle	
			antiparticle	(1)
				()
		(ii)	State the quark structure of an antibaryon.	
				40
				(1)
		(iii)	Give one property of an antiparticle that is the same for its correspondir particle and one property that is different.	ng
			Same	
			Different	
				(2)
			(Т	otal 11 marks)
Q6.		(a) proc	Pair production can occur when a photon interacts with matter. Explain t cess of pair production.	he
				(2)
				(-)
	<i>.</i>	_		
	(b)		plain why pair production cannot take place if the frequency of the photon by a certain value.	is

 			•
 			. (3)
			.,
	ng pair product	ion. State two oth	ner
			(2) (Total 7 marks)
	nd momentum are conserved durir that must also be conserved.		nd momentum are conserved during pair production. State two oth that must also be conserved.