Q1.A mass M hangs in equilibrium on a spring. M is made to oscillate about the equilibrium position by pulling it down 10 cm and releasing it. The time for M to travel back to the equilibrium position for the first time is 0.50 s . Which line, \mathbf{A} to \mathbf{D}, is correct for these oscillations?

	amplitude/cm	period/s
A	10	1.0
B	10	2.0
C	20	2.0
D	20	1.0

(Total 1 mark)

Q2. Which one of the following statements is true when an object performs simple harmonic motion about a central point O ?

A The acceleration is always away from 0 .
B The acceleration and velocity are always in opposite directions.
C The acceleration and the displacement from O are always in the same direction.
D The graph of acceleration against displacement is a straight line.
(Total 1 mark)

Q3.A girl of mass 40 kg stands on a roundabout 2.0 m from the vertical axis as the roundabout rotates uniformly with a period of 3.0 s . The horizontal force acting on the girl is approximately

A zero.
B $\quad 3.5 \times 10^{2} \mathrm{~N}$.

C $\quad 7.2 \times 10^{2} \mathrm{~N}$.

D $\quad 2.8 \times 10^{4} \mathrm{~N}$.
(Total 1 mark)

Q4.For a particle moving in a circle with uniform speed, which one of the following statements is incorrect?

A The velocity of the particle is constant.

B The force on the particle is always perpendicular to the velocity of the particle.

C There is no displacement of the particle in the direction of the force.

D The kinetic energy of the particle is constant.

Q5.A simple pendulum and a mass-spring system are taken to the Moon, where the gravitational field strength is less than on Earth. Which line, A to D, correctly describes the change, if any, in the period when compared with its value on Earth?

	period of pendulum	period of mass-spring system
A	decrease	decrease
B	increase	increase
C	no change	decrease
D	increase	no change

(Total 1 mark)

Q6.A body moves with simple harmonic motion of amplitude A and frequency $\frac{b}{2 \pi}$.

What is the magnitude of the acceleration when the body is at maximum displacement?

A zero

B $4 \pi^{2} A b^{2}$

C $A b^{2}$

D $\frac{4 \pi^{2} A}{b^{2}}$

Q7.

A ball of mass m, which is fixed to the end of a light string of length I, is released from rest at X. It swings in a circular path, passing through the lowest point Y at speed v. If the tension in the string at Y is T, which one of the following equations represents a correct application of Newton回 laws of motion to the ball at Y ?

A $\quad T=\frac{m v^{2}}{l}-m g$

B $\quad T-m g=\frac{m v^{2}}{l}$

C $m g-T=\frac{m v^{2}}{l}$

D $\quad T+\frac{m v^{2}}{l}=m g$

Q8.A body is in simple harmonic motion of amplitude 0.50 m and period 4π seconds. What is the speed of the body when the displacement of the body is 0.30 m ?

A $\quad 0.10 \mathrm{~ms}^{-1}$

B $\quad 0.15 \mathrm{~ms}^{-1}$
C $\quad 0.20 \mathrm{~m} \mathrm{~s}^{-1}$

D $\quad 0.40 \mathrm{~m} \mathrm{~s}^{-1}$
(Total 1 mark)

Q9. Which one of the following statements always applies to a damping force acting on a vibrating system?

A It is in the same direction as the acceleration.
B It is in the same direction as the displacement.
C It is in the opposite direction to the velocity.
D It is proportional to the displacement.

Q10.

A simple pendulum consists of a bob of mass m on the end of a light string of length l.
The bob is released from rest at X when the string is horizontal. When the bob passes through Y its velocity is U and the tension in the string is T. Which one of the following equations gives the correct value of T ?

A $\quad T=m g$
B $\quad T=\frac{m v^{2}}{l}$
C $\quad T+m g=\frac{m v^{2}}{l}$
D $\quad T-m g=\frac{m v^{2}}{l}$
(Total 1 mark)

Q11.A particle of mass m executes simple harmonic motion in a straight line with amplitude A and frequency f. Which one of the following expressions represents the total energy of the particle?

A $\quad 2 \pi^{2} m f A^{2}$
B $\quad 2 \pi^{2} m f^{2} A^{2}$
C $4 \pi^{2} m^{2} f^{2} A$
D $4 \pi^{2} m f^{2} A^{2}$
(Total 1 mark)

Q12.A simple pendulum and a mass-spring system both have the same time period T at the surface of the Earth. If taken to another planet where the acceleration due to gravity was half that on Earth, which line, A-D, in the table gives correctly the new periods?

	simple pendulum	mass-spring
A	$T \sqrt{2}$	T
B	$\frac{T}{\sqrt{2}}$	T
C	$T \sqrt{2}$	$\frac{T}{\sqrt{2}}$
D	$\frac{T}{\sqrt{2}}$	$T \sqrt{2}$

(Total 1 mark)

Q13.A body undergoes forced oscillation. Which one of the following will not be increasedby increasing the amplitude of the oscillatory driving force?

A the amplitude of the driven oscillation

B the energy of the driven oscillation
C the frequency of the driven oscillation
D the power required to maintain the driven oscillation
(Total 1 mark)

Q14. Which one of the following statements is not true for a body vibrating in simple harmonic motion when damping is present?

A The damping force is always in the opposite direction to the velocity.
B The damping force is always in the opposite direction to the acceleration.
C The presence of damping gradually reduces the maximum potential energy of the system.
D The presence of damping gradually reduces the maximum kinetic energy of the system.
(Total 1 mark)

Q15. For which of the following relationships is the quantity y related to the quantity x by the relationship $x \propto \frac{1}{y}$?

	x	y
A	energy stored in a spring	extension of the spring
B	gravitational field strength	distance from a point mass
C	de Broglie wavelength of an electron	momentum of the electron
D	period of a mass-spring system	spring constant (stiffness) of the spring

Q16.The diagrams show the variation of velocity and acceleration with time for a body undergoing simple harmonic motion.

Which one of the following is proportional to the change in momentum of the body during the time covered by the graphs?

A The area enclosed by the velocity-time graph and the time axis
B The gradient of the velocity-time graph at the point \mathbf{P}
C The area enclosed by the acceleration-time graph and the time axis
D The gradient of the acceleration-time graph at the point \mathbf{Q}

Q17.A particle is oscillating with simple harmonic motion described by the equation:

$$
s=5 \sin (20 \pi t)
$$

How long does it take the particle to travel from its position of maximum displacement to its mean position?

A $\frac{1}{40} \mathrm{~s}$
B $\quad \frac{1}{20} \mathrm{~s}$
C $\quad \frac{1}{10} \mathrm{~s}$
D $\quad \frac{1}{5} \mathrm{~s}$
(Total 1 mark)

Q18. The diagram shows two pendulums suspended from fire same thread, PQ.

\mathbf{X} is a heavy pendulum, the frequency f_{x} of which can be varied. \mathbf{Y} is a lighter pendulum of fixed frequency f_{y}. As the frequency of oscillation of \mathbf{X} is increased by shortening the thread, the amplitude of the oscillation of \mathbf{Y} changes.

Which one of the following graphs best represents the relationship between the amplitude a_{y} of the oscillation of \mathbf{Y} and the frequency f_{\times}of \mathbf{X} ?

A

B

C

D
(Total 1 mark)

